The State-of-the-Art Progress in Cloud Detection, Identification, and Tracking Approaches: A Systematic Review
Abstract
:1. Introduction
2. Clouds and Imaging Systems
2.1. Types of Clouds
2.2. Imaging Systems
2.2.1. Satellite Imaging
2.2.2. Total-Sky Imager
3. Cloud Detection
3.1. Cloud Detection from Satellite Images
3.2. Cloud Detection from Ground-Based Camera Images
4. Cloud Forecast and Tracking
4.1. Cloud Motion Vectors Prediction for Weather Forecasting
4.1.1. Correlation-Based Approaches
4.1.2. Local Rigid Motion Models
4.1.3. Convective Cloud Tracking
4.2. CMV Prediction for Solar Irradiance Forecast
Correlation-Based Approaches
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AMBP | Adjusted Mean-Based Prediction |
AT | Adaptive Threshold |
ATS | Application Technology Satellite |
BSAT | Background Subtraction Adaptive Threshold |
CC | Cross-Correlation |
CCC | Concordance Correlation Coefficient |
CCD | Charge-Coupled Device |
CMV | Cloud Motion Vector |
DBSCAN | Density-Based Spatial Clustering |
DNI | Direct Normal Irradiance |
DSLR | Digital Single-Lens Reflex |
FFT | Fast Fourier Transform |
FOV | Field of View |
FT | Fixed Threshold |
GFAT | Atmospheric Physics Group of the University of Granada |
GOES | Geostationary Operational Environmental Satellite |
HCAI | High-resolution Cloud Analysis Information |
HSV | Hue-Saturation-Value |
ISRO | Indian Space Research Organization |
MCC | Maximum Cross-Correlation |
MCS | Mesoscale Convective System |
MOSDAC | Meteorological and Oceanographic Satellite Data Archival Centre |
MSG | Meteosat Second Generation |
NIP | Normal Incidence Pyrheliometer |
NIR | Near-Infrared Region |
NREL | National Renewable Energy Laboratory |
NWP | Numerical Weather Prediction |
PBI | Pearson’s Bimodality Index |
PC | Phase Correlation |
PCA | Principal Component Analysis |
PV | Photo Voltaic |
RBR | Red–Blue Ratio |
RGB | Red–Green–Blue |
SCIV | Stereo-Cloud Imaging Velocimetry |
SPS | Superpixel Segmentation |
SVM | Support Vector Machine |
SWIR | Shortwave Infrared Region |
TCI | Total-sky Cloud Imager |
TIMP | Temperature Induced Mean-based Prediction |
TIR | Thermal Infrared Region |
TSI | Total-Sky Imager |
UCSD | UC San Diego Sky Imager |
USI | UC San Diego Sky Imager |
VOF | Variational Optical Flow |
WAHRSIS | Wide-Angle High-Resolution Sky Imaging System |
References
- Bokde, N.; Feijóo, A.; Villanueva, D.; Kulat, K. A review on hybrid empirical mode decomposition models for wind speed and wind power prediction. Energies 2019, 12, 254. [Google Scholar] [CrossRef] [Green Version]
- Kleissl, J. Solar Energy Forecasting and Resource Assessment; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Bokde, N.D.; Yaseen, Z.M.; Andersen, G.B. ForecastTB—An R package as a test-bench for time series forecasting—Application of wind speed and solar radiation modeling. Energies 2020, 13, 2578. [Google Scholar] [CrossRef]
- Sawant, M.; Thakare, S.; Rao, A.P.; Feijóo-Lorenzo, A.E.; Bokde, N.D. A Review on State-of-the-Art Reviews in Wind-Turbine-and Wind-Farm-Related Topics. Energies 2021, 14, 2041. [Google Scholar] [CrossRef]
- Fathi, M.; Haghi Kashani, M.; Jameii, S.M.; Mahdipour, E. Big data analytics in weather forecasting: A systematic review. Arch. Comput. Methods Eng. 2021, 1–29. [Google Scholar] [CrossRef]
- Bokde, N.; Feijóo, A.; Al-Ansari, N.; Tao, S.; Yaseen, Z.M. The hybridization of ensemble empirical mode decomposition with forecasting models: Application of short-term wind speed and power modeling. Energies 2020, 13, 1666. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Kambhamettu, C.; Goldgof, D.B.; Palaniappan, K.; Hasler, A. Tracking nonrigid motion and structure from 2D satellite cloud images without correspondences. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 1330–1336. [Google Scholar] [CrossRef]
- Sieglaff, J.M.; Hartung, D.C.; Feltz, W.F.; Cronce, L.M.; Lakshmanan, V. A satellite-based convective cloud object tracking and multipurpose data fusion tool with application to developing convection. J. Atmos. Ocean. Technol. 2013, 30, 510–525. [Google Scholar] [CrossRef]
- Goswami, B.; Bhandari, G. Automatically adjusting cloud movement prediction model from satellite infrared images. In Proceedings of the 2011 Annual IEEE India Conference, Hyderabad, India, 16–18 December 2011; pp. 1–4. [Google Scholar]
- Goswami, B.; Bhandari, G. Development of irregular cloud cluster encapsulating structure from satellite infrared images. In Proceedings of the 33rd Asian Conference on Remote Sensing (ACRS-2012), Pattaya, Thailand, 26–30 November 2012. [Google Scholar]
- Goswami, B.; Bhandari, G.; Goswami, S. Temperature induced mean based cloud motion prediction model for multiple cloud clusters in satellite infrared images. In Proceedings of the 2014 Fourth International Conference of Emerging Applications of Information Technology, Kolkata, India, 19–21 December 2014; pp. 279–282. [Google Scholar]
- Shakya, S.; Kumar, S. Characterising and predicting the movement of clouds using fractional-order optical flow. IET Image Process. 2019, 13, 1375–1381. [Google Scholar] [CrossRef]
- Alonso, J.; Ternero, A.; Batlles, F.J.; López, G.; Rodríguez, J.; Burgaleta, J.I. Prediction of cloudiness in short time periods using techniques of remote sensing and image processing. Energy Procedia 2014, 49, 2280–2289. [Google Scholar] [CrossRef] [Green Version]
- Cros, S.; Sébastien, N.; Liandrat, O.; Schmutz, N. Cloud pattern prediction from geostationary meteorological satellite images for solar energy forecasting. Remote Sensing of Clouds and the Atmosphere XIX; and Optics in Atmospheric Propagation and Adaptive Systems XVII. Int. Soc. Opt. Photonics 2014, 9242, 924202. [Google Scholar]
- Zaher, A.Y.; Ghanem, A. Clouds Motion Estimation from Ground-Based Sky Camera and Satellite Images. In Colorimetry and Image Processing; IntechOpen: London, UK, 2017. [Google Scholar]
- Leese, J.A.; Novak, C.S.; Taylor, V.R. The determination of cloud pattern motions from geosynchronous satellite image data. Pattern Recognit. 1970, 2, 279–292. [Google Scholar] [CrossRef]
- Smith, E.A.; Phillips, D.R. Automated cloud tracking using precisely aligned digital ATS pictures. IEEE Trans. Comput. 1972, 100, 715–729. [Google Scholar] [CrossRef]
- Sa’ada, N.; Harsono, T.; Basuki, A. Improvement of Segmentation Performance for Feature Extraction on Whirlwind Cloud-based Satellite Image using DBSCAN Clustering Algorithm. EMITTER Int. J. Eng. Technol. 2019, 7, 301–325. [Google Scholar] [CrossRef]
- Harsono, T.; Basuki, A. Cloud satellite image segmentation using meng hee heng k-means and dbscan clustering. In Proceedings of the 2018 International electronics symposium on knowledge creation and intelligent computing (IES-KCIC), Bali, Indonesia, 29–30 October 2018; pp. 367–371. [Google Scholar]
- Cahyanti, R.; Hutama, R.B.; Ramdlon, R.H.; Dwiastuti, W.; Hardiansyah, F.F.; Basuki, A. Whirlwind prediction using cloud movement patterns on satellite image. In Proceedings of the 2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), Surabaya, Indonesia, 26–27 September 2017; pp. 252–257. [Google Scholar]
- Long, C.; Slater, D.; Tooman, T.P. Total Sky Imager Model 880 Status and Testing Results; Pacific Northwest National Laboratory Richland: Washington, DC, USA, 2001. [Google Scholar]
- Li, H.; Wang, F.; Ren, H.; Sun, H.; Liu, C.; Wang, B.; Lu, J.; Zhen, Z.; Liu, X. Cloud identification model for sky images based on Otsu. In Proceedings of the International Conference on Renewable Power Generation (RPG 2015), Beijing, China, 17–18 October 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Stoffel, T.; Andreas, A. Nrel Solar Radiation Research Laboratory (srrl): Baseline Measurement System (BMS); Golden, Colorado (Data); Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 1981.
- Alonso-Montesinos, J.; Batlles, F.; Portillo, C. Solar irradiance forecasting at one-minute intervals for different sky conditions using sky camera images. Energy Convers. Manag. 2015, 105, 1166–1177. [Google Scholar] [CrossRef]
- Peng, Z.; Yu, D.; Huang, D.; Heiser, J.; Yoo, S.; Kalb, P. 3D cloud detection and tracking system for solar forecast using multiple sky imagers. Sol. Energy 2015, 118, 496–519. [Google Scholar] [CrossRef] [Green Version]
- Marquez, R.; Coimbra, C.F. Intra-hour DNI forecasting based on cloud tracking image analysis. Sol. Energy 2013, 91, 327–336. [Google Scholar] [CrossRef]
- Yang, J.; Lu, W.; Ma, Y.; Yao, W. An automated cirrus cloud detection method for a ground-based cloud image. J. Atmos. Ocean. Technol. 2012, 29, 527–537. [Google Scholar] [CrossRef]
- Quesada-Ruiz, S.; Chu, Y.; Tovar-Pescador, J.; Pedro, H.; Coimbra, C. Cloud-tracking methodology for intra-hour DNI forecasting. Sol. Energy 2014, 102, 267–275. [Google Scholar] [CrossRef]
- Cazorla, A.; Olmo, F.; Alados-Arboledas, L. Development of a sky imager for cloud cover assessment. J. Opt. Soc. America. A Opt. Image Sci. Vis. 2008, 25, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T. Prediction of output power variation of solar power plant by image measurement of cloud movement. J. Adv. Res. Phys. 2012, 2, 1–6. [Google Scholar]
- Liu, S.; Zhang, L.; Zhang, Z.; Wang, C.; Xiao, B. Automatic cloud detection for all-sky images using superpixel segmentation. IEEE Geosci. Remote Sens. Lett. 2014, 12, 354–358. [Google Scholar]
- Bernecker, D.; Riess, C.; Angelopoulou, E.; Hornegger, J. Continuous short-term irradiance forecasts using sky images. Sol. Energy 2014, 110, 303–315. [Google Scholar] [CrossRef]
- Chow, C.W.; Belongie, S.; Kleissl, J. Cloud motion and stability estimation for intra-hour solar forecasting. Sol. Energy 2015, 115, 645–655. [Google Scholar] [CrossRef]
- Yang, H.; Kurtz, B.; Nguyen, D.; Urquhart, B.; Chow, C.W.; Ghonima, M.; Kleissl, J. Solar irradiance forecasting using a ground-based sky imager developed at UC San Diego. Sol. Energy 2014, 103, 502–524. [Google Scholar] [CrossRef]
- Schmidt, T.; Kalisch, J.; Lorenz, E.; Heinemann, D. Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts. Atmos. Chem. Phys. 2016, 16, 3399–3412. [Google Scholar] [CrossRef] [Green Version]
- Kalisch, J.; Macke, A. Estimation of the total cloud cover with high temporal resolution and parametrization of short-term fluctuations of sea surface insolation. Meteorol. Z. 2008, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Madhavan, B.; Kalisch, J.; Macke, A. Shortwave surface radiation budget network for observing small-scale cloud inhomogeneity fields. Atmos. Meas. Tech. Discuss. 2015, 8, 2555–2589. [Google Scholar]
- Chauvin, R.; Nou, J.; Thil, S.; Grieu, S. Cloud motion estimation using a sky imager. Aip Conf. Proc. 2016, 1734, 150003. [Google Scholar]
- Dev, S.; Savoy, F.M.; Lee, Y.H.; Winkler, S. Short-term prediction of localized cloud motion using ground-based sky imagers. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 2563–2566. [Google Scholar]
- Zhen, Z.; Sun, Y.; Wang, F.; Mi, Z.; Ren, H.; Su, S.; Yan, Y.; Lu, H.; Engerer, N.A. A cloud displacement estimation approach for sky images based on phase correlation theory. In Proceedings of the 2016 IEEE International Conference on Power System Technology (POWERCON), Wollongong, NSW, Australia, 28 September–1 October 2016; pp. 1–6. [Google Scholar]
- Chang, M.C.; Yao, Y.; Li, G.; Tong, Y.; Tu, P. Cloud tracking for solar irradiance prediction. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 4387–4391. [Google Scholar]
- Dissawa, D.; Ekanayake, M.; Godaliyadda, G.; Ekanayake, J.B.; Agalgaonkar, A.P. Cloud motion tracking for short-term on-site cloud coverage prediction. In Proceedings of the 2017 Seventeenth International Conference on Advances in ICT for Emerging Regions (ICTer), Colombo, Sri Lanka, 6–9 September 2017; pp. 1–6. [Google Scholar]
- Ao, J.O.Z.; Xuer, S.T.; Salinas, S.V.; Chin, L.S. A Short Term Cloud Tracking Model Based on the Bruhn Optical Flow Method. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7598–7601. [Google Scholar]
- Wang, F.; Zhen, Z.; Liu, C.; Mi, Z.; Hodge, B.M.; Shafie-khah, M.; Catalão, J.P. Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting. Energy Convers. Manag. 2018, 157, 123–135. [Google Scholar] [CrossRef]
- Richardson, W.; Krishnaswami, H.; Vega, R.; Cervantes, M. A low cost, edge computing, all-sky imager for cloud tracking and intra-hour irradiance forecasting. Sustainability 2017, 9, 482. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.N.; Stroeve, J. Onboard detection of snow, ice, clouds and other geophysical processes using kernel methods. In Proceedings of the ICML 2003 Workshop on Machine Learning Technologies for Autonomous Space Sciences, Washington, DC, USA, 21 August 2003; Volume 3. [Google Scholar]
- Wong, M.A.; Hartigan, J. Algorithm as 136: A k-means clustering algorithm. J. R. Stat. Society. Ser. C (Appl. Stat.) 1979, 28, 100–108. [Google Scholar]
- Hashmi, M.F.; Ashish, B.; Sharma, V.; Keskar, A.G.; Bokde, N.D.; Yoon, J.H.; Geem, Z.W. LARNet: Real-Time Detection of Facial Micro Expression Using Lossless Attention Residual Network. Sensors 2021, 21, 1098. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.P.; Bokde, N.; Sinha, S. Photoacoustic imaging for management of breast cancer: A literature review and future perspectives. Appl. Sci. 2020, 10, 767. [Google Scholar] [CrossRef] [Green Version]
- Rigollier, C.; Lefèvre, M.; Wald, L. The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energy 2004, 77, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, M.; Yoshimura, M.; Nakashizuka, T. Cloud cover estimation using multitemporal hemisphere imageries. Int. Arch. Photogramm. Remote Sens. Spat. Inf. 2004, 35, 826–829. [Google Scholar]
- Seiz, G.; Baltsavias, E.P.; Gruen, A. Cloud Mapping from the Ground: Use of Photogrammetric Methods; Technical Report; ETH Zurich: Zurich, Switzerland, 2002. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Lu, W.; Yang, J. A hybrid thresholding algorithm for cloud detection on ground-based color images. J. Atmos. Ocean. Technol. 2011, 28, 1286–1296. [Google Scholar] [CrossRef]
- Radovan, A.; Ban, Ž. Predictions of cloud movements and the sun cover duration. In Proceedings of the 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 26–30 May 2014; pp. 1210–1215. [Google Scholar]
- Suzuki, S. Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 1985, 30, 32–46. [Google Scholar] [CrossRef]
- Crisosto, C. Autoregressive Neural Network for Cloud Concentration Forecast from Hemispheric Sky Images. Int. J. Photoenergy 2019, 2019, 4375874. [Google Scholar] [CrossRef] [Green Version]
- Dev, S.; Lee, Y.H.; Winkler, S. Systematic study of color spaces and components for the segmentation of sky/cloud images. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 5102–5106. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst. 1997, 9, 155–161. [Google Scholar]
- Zhen, Z.; Wang, Z.; Wang, F.; Mi, Z.; Li, K. Research on a cloud image forecasting approach for solar power forecasting. Energy Procedia 2017, 142, 362–368. [Google Scholar] [CrossRef]
- Menzel, W.P. Cloud tracking with satellite imagery: From the pioneering work of Ted Fujita to the present. Bull. Am. Meteorol. Soc. 2001, 82, 33–48. [Google Scholar] [CrossRef]
- Hasler, A.; Palaniappan, K.; Kambhammetu, C.; Black, P.; Uhlhorn, E.; Chesters, D. High-resolution wind fields within the inner core and eye of a mature tropical cyclone from GOES 1-min images. Bull. Am. Meteorol. Soc. 1998, 79, 2483–2496. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.N. Cloud motion analysis using multichannel correlation-relaxation labeling. IEEE Geosci. Remote Sens. Lett. 2006, 3, 392–396. [Google Scholar] [CrossRef]
- Kittler, J.; Illingworth, J. Relaxation labelling algorithms—A review. Image Vis. Comput. 1985, 3, 206–216. [Google Scholar] [CrossRef]
- Aggarwal, J.; Duda, R.O. Computer analysis of moving polygonal images. IEEE Trans. Comput. 1975, 100, 966–976. [Google Scholar] [CrossRef]
- Kambhamettu, C.; Palaniappan, K.; Hasler, A.F. Automated cloud-drift winds from GOES images. GOES-8 and Beyond. Int. Soc. Opt. Photonics 1996, 2812, 122–133. [Google Scholar]
- Palaniappan, K.; Kambhamettu, C.; Hasler, A.F.; Goldgof, D.B. Structure and semi-fluid motion analysis of stereoscopic satellite images for cloud tracking. In Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA, USA, 20–23 June 1995; pp. 659–665. [Google Scholar]
- Vila, D.A.; Machado, L.A.T.; Laurent, H.; Velasco, I. Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Weather Forecast. 2008, 23, 233–245. [Google Scholar] [CrossRef]
- Porter, J.N.; Cao, G.X. Using ground-based stereo cameras to derive cloud-level wind fields. Opt. Lett. 2009, 34, 2384–2386. [Google Scholar] [CrossRef]
- Chow, C.W.; Urquhart, B.; Lave, M.; Dominguez, A.; Kleissl, J.; Shields, J.; Washom, B. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Sol. Energy 2011, 85, 2881–2893. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Yoo, S.; Yu, D.; Huang, D.; Qin, H. Cloud motion detection for short term solar power prediction. In Proceedings of the ICML 2011 Workshop on Machine Learning for Global Challenges, Bellevue, WA, USA, 28 June–2 July 2011. [Google Scholar]
- Westerweel, J.; Scarano, F. Universal outlier detection for PIV data. Exp. Fluids 2005, 39, 1096–1100. [Google Scholar] [CrossRef]
- Huang, H.; Xu, J.; Peng, Z.; Yoo, S.; Yu, D.; Huang, D.; Qin, H. Cloud motion estimation for short term solar irradiation prediction. In Proceedings of the 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, 21–24 October 2013; pp. 696–701. [Google Scholar]
- Alonso, J.; Batlles, F. Short and medium-term cloudiness forecasting using remote sensing techniques and sky camera imagery. Energy 2014, 73, 890–897. [Google Scholar] [CrossRef]
- Derpanis, K.G. The Harris Corner Detector. 2004, Volume 2. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.482.1724&rep=rep1&type=pdf (accessed on 15 January 2021).
- Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the Intl Joint Conference on Artificial Intelligence (IJCAI), Vancouver, UK, 24–28 August 1987; pp. 674–679. [Google Scholar]
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter; Department of Computer Science, University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 1995. [Google Scholar]
- Hashmi, M.F.; Ashish, B.K.K.; Keskar, A.G.; Bokde, N.D.; Yoon, J.H.; Geem, Z.W. An exploratory analysis on visual counterfeits using conv-lstm hybrid architecture. IEEE Access 2020, 8, 101293–101308. [Google Scholar] [CrossRef]
- Hashmi, M.F.; Ashish, B.K.K.; Keskar, A.G.; Bokde, N.D.; Geem, Z.W. FashionFit: Analysis of mapping 3D pose and neural body fit for custom virtual try-on. IEEE Access 2020, 8, 91603–91615. [Google Scholar] [CrossRef]
- Murthy, C.B.; Hashmi, M.F.; Bokde, N.D.; Geem, Z.W. Investigations of object detection in images/videos using various deep learning techniques and embedded platforms—A comprehensive review. Appl. Sci. 2020, 10, 3280. [Google Scholar] [CrossRef]
Sr. No. | Article | Imaging System | Resolution | Algorithm |
---|---|---|---|---|
1 | [46] | MODIS Satellite | Channels 1–2: 250 m, Channels 3–7: 500 m | Kernel-based clustering |
2 | [51] | In-house WSI | 5.2 megapixel | r/b Ratio |
3 | [29] | In-house sky imager | 1.31 megapixels | MLP for cloud classification |
4 | [9] | Kalpana-1 | 2 km × 2 km | K-means clustering |
5 | [30] | Ground Camera | 1280 × 800 pixels | Cloud Classification by Brightness |
6 | [31] | WSI (dataset of Kiel University and IapCAS data set) | Not available | Superpixel Segmentation |
7 | [27] | TSI | 352 × 288 | background subtraction adaptive threshold method (BSAT) |
8 | [10] | Kalpana-1 | 2 km × 2 km | K-means clustering + thresholding |
9 | [10] | Kalpana-1 | 2 km × 2 km | cloud cluster encapsulating |
10 | [26] | TSI | 352 × 288 pixels | Segmentation + adaptive thresholding |
11 | [32] | In-house WSI | 2592 × 1944 pixels | r/b threshold + segmentation |
12 | [14] | MSG satellite | 1 km | Thresholding |
13 | [58] | WSI HYAT database | Not available | Color space-based segmentation |
14 | [11] | Kalpana-1 | 2 km × 2 km | Temperature induced mean |
15 | [55] | Ground camera | 1920 × 1080 pixels | HSV color space + segmentation |
16 | [22] | TSI | 352 × 288 pixels | Segmentation |
17 | [25] | TSI | 352 × 288 pixels | 3D Cloud Detection supervised classifier to detect clouds |
18 | [41] | UCSD TSI | 352 × 288 pixels | Sigmoidal classification + thresholding |
19 | [45] | High Resolution Pi Camera | 1024 × 768 pixels | RBR + thresholding |
20 | [61] | EKO Sky camera | 2M pixel | Otsu’s method. |
21 | [42] | Fisheye lens camera system | 1024 × 768 pixels | r/b threshold |
22 | [43] | Nikon d60 Camera based sky imager | 10.2 megapixel | Segmentation technique (b − r)/(b + r) |
23 | [57] | Canon EOS 700D -based Sky Imager | 18.0 megapixels | Sky index + haze index |
24 | [18] | Himawari 8 Satellite | Spatial resolution: 5 km | DBSCAN Clustering algorithm |
Sr. No. | Article | Imaging System | Resolution | Algorithm |
---|---|---|---|---|
1 | [16] | ATS-I and ATS-III | 3.2 km | FFT-based cross-correlation |
2 | [17] | ATS | 3.2 km | Automated cloud tracking using |
3 | [7] | GOES-8 and GOES-9/ Hurricane Luis image sequences | 4 km × 4 km for TIR images | Tracking Nonrigid Motion |
4 | [64] | MSG imagery | 1 km × 1 km | Multichannel correlation relaxation labeling |
5 | [69] | GOES-8 | 4 km × 4 km for TIR images | The Forecasting and Tracking the Evolution of Cloud Clusters (ForTraCC) technique |
6 | [70] | Ground-based camera system | 4 megapixel | Stereo-Cloud Imaging Velocimetry |
7 | [9] | Kalpana-1 | 2 km × 2 km | Tracking the displacement of CoM Adjusted Mean-Based Prediction (AMBP) |
8 | [30] | Axis M1114 network camera | 1280 × 800 pixels | Stereovision |
9 | [72] | TSI | 352 × 288 pixels | phase correlation and cross correlations |
10 | [10] | Kalpana -I | 2 km × 2 km | Temperature Induced Mean-based Prediction |
11 | [31] | TSI | 352 × 288 pixels | phase correlation and cross correlations |
12 | [26] | TSI | 352 × 288 pixels | particle image velocimetry (PIV) |
13 | [8] | GOES-12 | 4 km × 4 km for TIR images | ANN |
14 | [11] | Kalpana-1 | 2 km × 2 km | TIMP modified for multiple clusters |
15 | [32] | Ground-based camera system | 5 megapixel | Nonrigid registration for detecting cloud motion and a Kalman filter for forecasting |
16 | [14] | Meteosat-10 Satellite | 3 km | Optical flow and PC |
17 | [33] | UCSD Sky Imager | 1748 × 1748 pixels | Variational optical flow |
18 | [24] | TSI | 352 × 288 pixels | maximum cross-correlation method |
19 | [42] | Ground-based sky camera | 1024 × 768 pixels | Cross-correlation technique |
20 | [15] | MSG, and ground -based camera system | MSG: 1 km Camera: 768 × 576 pixels | Fast and efficient block matching algorithm |
21 | [71] | TSI | 352 × 288 pixels | cross-correlation and segmentation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawant, M.; Shende, M.K.; Feijóo-Lorenzo, A.E.; Bokde, N.D. The State-of-the-Art Progress in Cloud Detection, Identification, and Tracking Approaches: A Systematic Review. Energies 2021, 14, 8119. https://doi.org/10.3390/en14238119
Sawant M, Shende MK, Feijóo-Lorenzo AE, Bokde ND. The State-of-the-Art Progress in Cloud Detection, Identification, and Tracking Approaches: A Systematic Review. Energies. 2021; 14(23):8119. https://doi.org/10.3390/en14238119
Chicago/Turabian StyleSawant, Manisha, Mayur Kishor Shende, Andrés E. Feijóo-Lorenzo, and Neeraj Dhanraj Bokde. 2021. "The State-of-the-Art Progress in Cloud Detection, Identification, and Tracking Approaches: A Systematic Review" Energies 14, no. 23: 8119. https://doi.org/10.3390/en14238119
APA StyleSawant, M., Shende, M. K., Feijóo-Lorenzo, A. E., & Bokde, N. D. (2021). The State-of-the-Art Progress in Cloud Detection, Identification, and Tracking Approaches: A Systematic Review. Energies, 14(23), 8119. https://doi.org/10.3390/en14238119