Enhanced Short-Term Load Forecasting Using Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proposed Approach for STLF
2.2. Implementation for Short Term Load Forecasting
- Hour: The time of day for which the load forecast will be made. The time is expressed as an integer with values ranging from 0 to 23.
- Week Day: It’s a characteristic coding to decide the day of the week. The coding is done with integers ranging from 1 to 7, with 1 denoting Sunday, 2 denoting Monday, and so on.
- Holiday: Binary coding is used to indicate whether a day is a holiday or a working day. The number 1 is used to designate Greek state holidays, such as national anniversaries and major religious holidays, as well as weekends. The other days, on the other hand, are coded with number 0.
- Temperature: The hourly value (in Celsius) of the temperature of the day for which the load is forecast.
- D-1 Load: The load value of the day preceding the one for which prediction is made, at the corresponding time. For example, if the MLP neural network predicts Wednesday at 17:00 then the value of Tuesday load at 17:00 is entered as input to the neural network.
- D-7 Load: The value of the load at the corresponding time on the same day of the previous week. If the load prediction for Wednesday 12 May 2017 at 17:00 is the output of the neural network, then the value of the load for Wednesday 5 May 2017 at 17:00 is entered as the neural network’s input.
- H-1 Load: The value of the previous hour’s load on which the forecast is based. If the load prediction for Wednesday 12 May 2017 at 17:00 is the neural network’s output, then the value of the load on Wednesday 12 May 2017 at 16:00 is entered as the neural network’s input.
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ongsakul, W.; Dieu, V.N. Artificial Intelligence in Power System Optimization; CRC Press, Inc.: Boca Raton, FL, USA, 2013. [Google Scholar]
- Kyriakides, E.; Polycarpou, M. Short Term Electric Load Forecasting: A Tutorial. In Trends in Neural Computation; Chen, K., Wang, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 391–418. [Google Scholar] [CrossRef]
- Metaxiotis, K.; Kagiannas, A.; Askounis, D.; Psarras, J. Artificial intelligence in short term electric load forecasting: A state-of-the-art survey for the researcher. Energy Convers. Manag. 2003, 44, 1525–1534. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Bargiotas, D.; Tsoukalas, L. Towards Smart Energy Systems: Application of Kernel Machine Regression for Medium Term Electricity Load Forecasting. SpringerPlus 2016, 5, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontogiannis, D.; Bargiotas, D.; Daskalopulu, A. Fuzzy Control System for Smart Energy Management in Residential Buildings Based on Environmental Data. Energies 2021, 14, 752. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Ikonomopoulos, A.; Alamaniotis, A.; Bargiotas, D.; Tsoukalas, L.H. Day-ahead electricity price forecasting using optimized multiple-regression of relevance vector machines. In Proceedings of the 8th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2012), Cagliari, Italy, 1–3 October 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Bargiotas, D.; Bourbakis, N.G.; Tsoukalas, L.H. Genetic Optimal Regression of Relevance Vector Machines for Electricity Pricing Signal Forecasting in Smart Grids. IEEE Trans. Smart Grid 2015, 6, 2997–3005. [Google Scholar] [CrossRef]
- Park, D.; El-Sharkawi, M.; Marks, R.; Atlas, L.; Damborg, M. Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst. 1991, 6, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.; Hsu, Y.Y.; Yang, C.C. Short term load forecasting using a multilayer neural network with an adaptive learning algorithm. IEEE Trans. Power Syst. 1992, 7, 141–149. [Google Scholar] [CrossRef]
- Peng, T.; Hubele, N.; Karady, G. Advancement in the application of neural networks for short-term load forecasting. IEEE Trans. Power Syst. 1992, 7, 250–257. [Google Scholar] [CrossRef]
- Kandil, N.; Wamkeue, R.; Saad, M.; Georges, S. An efficient approach for short term load forecasting using artificial neural networks. Int. J. Electr. Power Energy Syst. 2006, 28, 525–530. [Google Scholar] [CrossRef]
- Bakirtzis, A.; Petridis, V.; Kiartzis, S.; Alexiadis, M.; Maissis, A. A neural network short term load forecasting model for the Greek power system. IEEE Trans. Power Syst. 1996, 11, 858–863. [Google Scholar] [CrossRef]
- Mandal, P.; Senjyu, T.; Funabashi, T. Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market. Energy Convers. Manag. 2006, 47, 2128–2142. [Google Scholar] [CrossRef]
- Tsekouras, G.; Kanellos, F.; Kontargyri, V.; Karanasiou, I.; Elias, C.; Salis, A.; Mastorakis, N. A Comparison of Artificial Neural Networks Algorithms for Short Term Load Forecasting in Greek Intercontinental Power System. 2008. Available online: http://users.ntua.gr/vkont/CSECS_2008.pdf (accessed on 5 February 2021).
- Alamaniotis, M.; Tsoukalas, L.H. Anticipation of minutes-ahead household active power consumption using Gaussian processes. In Proceedings of the 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA), Corfu, Greece, 6–8 July 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Kontogiannis, D.; Bargiotas, D.; Daskalopulu, A. Minutely Active Power Forecasting Models Using Neural Networks. Sustainability 2020, 12, 3177. [Google Scholar] [CrossRef] [Green Version]
- Yun, Z.; Quan, Z.; Caixin, S.; Shaolan, L.; Yuming, L.; Yang, S. RBF Neural Network and ANFIS-Based Short-Term Load Forecasting Approach in Real-Time Price Environment. IEEE Trans. Power Syst. 2008, 23, 853–858. [Google Scholar] [CrossRef]
- Chang, W.Y. Short-Term Load Forecasting Using Radial Basis Function Neural Network. J. Comput. Commun. 2015, 3, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Cecati, C.; Kolbusz, J.; Różycki, P.; Siano, P.; Wilamowski, B.M. A Novel RBF Training Algorithm for Short-Term Electric Load Forecasting and Comparative Studies. IEEE Trans. Ind. Electron. 2015, 62, 6519–6529. [Google Scholar] [CrossRef]
- Hanmandlu, M.; Chauhan, B.K. Load Forecasting Using Hybrid Models. IEEE Trans. Power Syst. 2011, 26, 20–29. [Google Scholar] [CrossRef]
- Panapakidis, I.P. Clustering based day-ahead and hour-ahead bus load forecasting models. Int. J. Electr. Power Energy Syst. 2016, 80, 171–178. [Google Scholar] [CrossRef]
- Dong, X.; Qian, L.; Huang, L. Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach. In Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju, Korea, 13–16 February 2017; pp. 119–125. [Google Scholar] [CrossRef]
- Amjady, N.; Keynia, F. A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems. Energies 2011, 4, 488–503. [Google Scholar] [CrossRef]
- Ekonomou, L.; Christodoulou, C.; Mladenov, V. A short-term load forecasting method using artificial neural networks and wavelet analysis. Int. J. Power Syst. 2016, 1, 64–68. [Google Scholar]
- Fahiman, F.; Erfani, S.M.; Rajasegarar, S.; Palaniswami, M.; Leckie, C. Improving load forecasting based on deep learning and K-shape clustering. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 4134–4141. [Google Scholar] [CrossRef]
- Liu, N.; Tang, Q.; Zhang, J.; Fan, W.; Liu, J. A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids. Appl. Energy 2014, 129, 336–345. [Google Scholar] [CrossRef]
- Aly, H.H. A proposed intelligent short-term load forecasting hybrid models of ANN, WNN and KF based on clustering techniques for smart grid. Electr. Power Syst. Res. 2020, 182, 106191. [Google Scholar] [CrossRef]
- Massaoudi, M.; Refaat, S.S.; Chihi, I.; Trabelsi, M.; Oueslati, F.; Abu-Rub, H. A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting. Energy 2020, 214, 118874. [Google Scholar] [CrossRef]
- Syed, D.; Abu-Rub, H.; Ghrayeb, A.; Refaat, S.S.; Houchati, M.; Bouhali, O.; Bañales, S. Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid With Clustering and Consumption Pattern Recognition. IEEE Access 2021, 9, 54992–55008. [Google Scholar] [CrossRef]
- Wu, L.; Kong, C.; Hao, X.; Chen, W. A Short-Term Load Forecasting Method Based on GRU-CNN Hybrid Neural Network Model. Math. Probl. Eng. 2020, 2020, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Farsi, B.; Amayri, M.; Bouguila, N.; Eicker, U. On Short-Term Load Forecasting Using Machine Learning Techniques and a Novel Parallel Deep LSTM-CNN Approach. IEEE Access 2021, 9, 31191–31212. [Google Scholar] [CrossRef]
- Hossen, T.; Plathottam, S.J.; Angamuthu, R.K.; Ranganathan, P.; Salehfar, H. Short-term load forecasting using deep neural networks (DNN). In Proceedings of the 2017 North American Power Symposium (NAPS), Morgantown, WV, USA, 17–19 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
- Ryu, S.; Noh, J.; Kim, H. Deep neural network based demand side short term load forecasting. In Proceedings of the 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm), Sydney, Australia, 6–9 November 2016; pp. 308–313. [Google Scholar] [CrossRef]
- Zhu, J. Optimization of Power System Operation; IEEE: Piscataway, NJ, USA, 2015; p. 623. [Google Scholar] [CrossRef]
- Singh, H.; Lone, Y.A. Artificial Neural Networks. In Deep Neuro-Fuzzy Systems with Python: With Case Studies and Applications from the Industry; Apress: Berkeley, CA, USA, 2020; pp. 157–198. [Google Scholar] [CrossRef]
- Twomey, J.; Smith, A. Performance measures, consistency, and power for artificial neural network models. Math. Comput. Model. 1995, 21, 243–258. [Google Scholar] [CrossRef]
Scaling Method | MSE | MAE | MAPE |
---|---|---|---|
Unscaled | 44,111.39451 | 160.99752 | 2.72% |
Scaling Method | MSE | MAE | MAPE |
---|---|---|---|
Unscaled | 44,111.39451 | 160.99752 | 2.72% |
Simple Scaling | 28,208.88762 | 131.14385 | 2.24% |
Scaling Method | MSE | MAE | MAPE |
---|---|---|---|
Unscaled | 44,111.39451 | 160.99752 | 2.72% |
Simple Scaling | 28,208.88762 | 131.14385 | 2.24% |
Enhanced Scaling | 22,111.66683 | 112.91976 | 1.92% |
Scaling Method | MSE | MAE | MAPE |
---|---|---|---|
Unscaled | 44,111.39451 | 160.99752 | 2.72% |
Simple Scaling | 28,208.88762 | 131.14385 | 2.24% |
Enhanced Scaling | 22,111.66683 | 112.91976 | 1.92% |
Min-Max Scaling | 40,720.48741 | 159.61260 | 2.73% |
Scaling Method | MSE | MAE | MAPE |
---|---|---|---|
Unscaled | 44,111.39451 | 160.99752 | 2.72% |
Simple Scaling | 28,208.88762 | 131.14385 | 2.24% |
Enhanced Scaling | 22,111.66683 | 112.91976 | 1.92% |
Min-Max Scaling | 40,720.48741 | 159.61260 | 2.73 % |
Enh. Min-Max Scaling | 18,985.37885 | 103.60419 | 1.76 % |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arvanitidis, A.I.; Bargiotas, D.; Daskalopulu, A.; Laitsos, V.M.; Tsoukalas, L.H. Enhanced Short-Term Load Forecasting Using Artificial Neural Networks. Energies 2021, 14, 7788. https://doi.org/10.3390/en14227788
Arvanitidis AI, Bargiotas D, Daskalopulu A, Laitsos VM, Tsoukalas LH. Enhanced Short-Term Load Forecasting Using Artificial Neural Networks. Energies. 2021; 14(22):7788. https://doi.org/10.3390/en14227788
Chicago/Turabian StyleArvanitidis, Athanasios Ioannis, Dimitrios Bargiotas, Aspassia Daskalopulu, Vasileios M. Laitsos, and Lefteri H. Tsoukalas. 2021. "Enhanced Short-Term Load Forecasting Using Artificial Neural Networks" Energies 14, no. 22: 7788. https://doi.org/10.3390/en14227788
APA StyleArvanitidis, A. I., Bargiotas, D., Daskalopulu, A., Laitsos, V. M., & Tsoukalas, L. H. (2021). Enhanced Short-Term Load Forecasting Using Artificial Neural Networks. Energies, 14(22), 7788. https://doi.org/10.3390/en14227788