Hygrothermal and Mechanical Behaviors of Fiber Mortar: Comparative Study between Palm and Hemp Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phase 1—Extraction and Treatment of Natural Fibers
2.1.1. Extraction and Morphology of PS Fibers
2.1.2. Fibers Treatment
2.2. Phase 2—Fibers-Reinforced Mortar Mixtures
3. Test Results and Discussion
3.1. Morphological Characteristics of the Fibers
3.2. Sorption Isotherms of the Investigated Fibers
3.3. Porosity of the Fibers-Reinforced Mortar Mixtures
3.4. Thermal Conductivity of the Investigated Fiber Mortars
3.5. Sorption/Desorption Isotherms of the Investigated Mixtures
3.6. Moisture Buffer Value (MBV)
3.7. Compressive Strength Development of the Investigated Mortar Mixtures
4. Conclusions
- The palm stem fibers (PS) have a rough and porous surface with a clear deposition of lignin, hemicellulose, and pectin on their surface. The microscopic observations revealed that PS fibers have a morphology similar to that of coir fibers and a complex microstructure of an assembly of elementary fibers having opened on their surfaces.
- The novel PS fibers are hygroscopic materials with high capillary condensation. The infusion of fibers significantly reduced their water absorption by up of 50%. In addition, their impregnation in hydrophobic resin reduced their hydrophilic character.
- The dry mortar mixtures incorporating 5% of PS and HF fibers exhibited low thermal conductivity in the order of 102 and 112 mW/(m·K), respectively, compared to 185 mW/(m·K) of the control mixture. In the case of wet mixture, this represents an increase of 245% and 200% compared to the control mortar (245 mW/(m·K) and 223 mW/(m·K)).
- The thermal conductivity of the mixture is affected not only by the percentage of fibers and their orientation in the matrix, but also by the water content of the material.
- The fiber mortar mixtures exhibited higher porosity and water absorption compared to the control mixture, regardless of the fiber content. Higher fiber content resulted in higher porosity and water absorption. This resulted in better moisture buffer capacity and lower thermal conductivity and compressive strength.
- The investigated fiber mortar mixtures exhibited an MBV greater than 2 [g/(%HR·m2)], regardless of the fiber content. The use of 5% of fibers resulted in the best moisture regulating behavior.
- The compressive strength of fiber mortar mixtures is inversely proportional to the percentage of fibers. The higher the percentage of natural fibers, the lower the compressive strength of the investigated mortar mixtures. This is mainly due to the reduction of compactness of the lime matrix and increase in porosity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statements
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panyakaew, S.; Fotios, S. New thermal insulation boards made from coconut husk and bagasse. Energy Build. 2011, 43, 1732–1739. [Google Scholar] [CrossRef] [Green Version]
- Korjenic, A.; Petránek, V.; Zach, J.; Hroudová, J. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy Build. 2011, 43, 2518–2523. [Google Scholar] [CrossRef]
- Agoudjil, B.; Benchabane, A.; Boudenne, A.; Ibos, L.; Fois, M. Renewable materials to reduce buildings heat loss: Characteri-zation of date palm wood. Energy Build. 2011, 43, 491–497. [Google Scholar] [CrossRef]
- Abdullah, H.M.; Latif, M.H.A.; Attiya, H.G. Characterization and determination of lignin in different types of Iraqi phoenix date palm pruning woods. Int. J. Biol. Macromol. 2013, 61, 340–346. [Google Scholar] [CrossRef] [PubMed]
- AlMaadeed, M.A.; Kahraman, R.; Khanam, P.N.; Madi, N. Date palm wood flour/glass fibre reinforced hybrid composites of recycled polypropylene: Mechanical and thermal properties. Mater. Des. 2012, 42, 289–294. [Google Scholar] [CrossRef]
- AlMaadeed, M.A.; Nógellová, Z.; Janigová, I.; Krupa, I. Improved mechanical properties of recycled linear low-density poly-ethylene composites filled with date palm wood powder. Mater. Des. 2014, 58, 209–216. [Google Scholar] [CrossRef]
- Bouguerra, A.; Ledhem, A.; de Barquin, F.; Dheilly, R.-M.; Quéneudec, M. Effect of microstructure on the mechanical and thermal properties of lightweight concrete prepared from clay, cement, and wood aggregates. Cem. Concr. Res. 1998, 28, 1179–1190. [Google Scholar] [CrossRef]
- Savastano Jr, H.; Warden, P.G.; Coutts, R.S.P. Potential of alternative fibre cements as building materials for developing areas. Cem. Concr. Compos. 2003, 25, 585–592. [Google Scholar] [CrossRef]
- Benmansour, N.; Agoudjil, B.; Boudenne, A.; Garnier, B. Numerical investigation of heat transfer of silver-coated glass particles dispersed in ethylene vinyl acetate matrix. Int. J. Thermophys. 2014, 35, 1803–1816. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Wang, L. Properties of hemp fibre reinforced concrete composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Olivares, F.; Bollati, M.; del Rio, M.; Parga-Landa, B. Development of cork–gypsum composites for building applications. Constr. Build. Mater. 1999, 13, 179–186. [Google Scholar] [CrossRef]
- Panesar, D.; Shindman, B. The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cem. Concr. Compos. 2012, 34, 982–992. [Google Scholar] [CrossRef]
- Bouguerra, A.; Amiri, O.; Ait-Mokhtar, A.; Diop, M.B. Sorption de l’eau et structure des pores de matériaux composites ciment-bois (Water sorptivity and pore structure of wood–cementitious composites). Mag. Concr. Res. 2002, 54, 103–112. [Google Scholar] [CrossRef]
- Pinto, J.; Paiva, A.; Varum, H.; Costa, A.; Cruz, D.; Pereira, S.; Fernandes, L.; Tavares, P.; Agarwal, J. Corn’s cob as a potential ecological thermal insulation material. Energy Build. 2001, 43, 1985–1990. [Google Scholar] [CrossRef]
- Zach, J.; Korjenic, A.; Pitránek, V.; Hroudová, J.; Bednar, T. Performance evaluation and research of alternative thermal insulations based on cheep wool. Energy Build. 2012, 49, 246–253. [Google Scholar] [CrossRef]
- Siddique, R. Properties of concrete incorporating high volumes of class F fly ash and san fibres. Cem. Concr. Res. 2004, 34, 37–42. [Google Scholar] [CrossRef]
- Jauberthie, R.; Rendell, F.; Tamba, S.; Cissé, I.K. Properties of cement–rice husk mixture. Constr. Build. Mater. 2003, 17, 239–243. [Google Scholar] [CrossRef]
- Nam, T.H.; Ogihara, S.; Kobayashi, S. Interfacial, Mechanical and Thermal Properties of Coir Fiber-Reinforced Poly(lactic acid) Biodegradable Composites. Adv. Compos. Mater. 2012, 21, 103–122. [Google Scholar] [CrossRef]
- Garikapati, K.P.; Sadeghian, P. Mechanical behavior of flax-lime concrete blocks made of waste flax shives and lime binder reinforced with jute fabric. J. Build. Eng. 2020, 29, 101187. [Google Scholar] [CrossRef]
- Hannant, D.J. Fibre Cements and Fibre Concretes; Wiley-Inter Sciences: New York, NY, USA, 1978; p. 219. [Google Scholar]
- Nguyen, T.T. Contribution à L’étude de la Formulation et du Procédé de Fabrication D’éléments de Construction en Béton de Chanvre. Ph.D. Thesis, Université Bretagne Sud, Lorient, France, 2010. [Google Scholar]
- Cook, D.J.; Uher, C. The thermal conductivity of fibre-reinforced concrete. Cem. Concr. Res. 1974, 4, 497–509. [Google Scholar] [CrossRef]
- Ganjian, E. Relationship between Porosity and Thermal Conductivity of Concrete. Ph.D. Thesis, University of Leeds, Leeds, UK, 1990. [Google Scholar]
- Hens, H. Applied Building Physics; Wilhelm Ernst & Sohn: Berlin, Germany, 2012. [Google Scholar]
- Rashid, M.H.; Mallick, D.; Haque, T. Effects of aggregate types on thermal properties of concrete. ARPN J. Eng. Appl. Sci. 2012, 7, 900–906. [Google Scholar]
- Cerezo, V. Propriétés Mécaniques, Thermiques et Acoustiques d’un Matériau à Base de Particules Végétales: Approche Expérimentale et Modélisation Théorique. Ph.D. Thesis, Institut National des Sciences Appliquées de Lyon, Villeurbanne, France, 2005. [Google Scholar]
- Rahim, M.; Douzane, O.; Le, A.T.; Langlet, T. Effect of moisture and temperature on thermal properties of three bio-based materials. Constr. Build. Mater. 2016, 111, 119–127. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Oguocha, I.N.; Panigrahi, S. Thermal diffusivity, thermal conductivity, and specific heat of flax fiber–HDPE biocomposites at processing temperatures. Compos. Sci. Technol. 2008, 68, 1753–1758. [Google Scholar] [CrossRef]
- Dubois, V.; Leblanc, A.; Carpentier, O.; Alhaik, G.; Wirquin, E. Performances of flax shive-based lightweight composites with rapid hard-ening. Constr. Build. Mater. 2018, 165, 17–27. [Google Scholar] [CrossRef]
- Page, J.; Sonebi, M.; Amziane, S. Design and multi-physical properties of a new hybrid hemp-flax composite material. Constr. Build. Mater. 2017, 139, 502–512. [Google Scholar] [CrossRef] [Green Version]
- Al-Mohamadawi, A.; Benhabib, K.; Dheilly, R.-M.; Goullieux, A. Hygric Behavior of Cement Composites Elaborated with Flax Shives, a Byproduct of the Linen Industry. Waste Biomass Valorization 2019, 11, 5053–5066. [Google Scholar] [CrossRef]
- Feng, H.; Li, J.; Wang, L. Preparation of biodegradable flax shive cellulose-based superabsorbent polymer under microwave irradiation. BioResources 2010, 5, 1484–1495. [Google Scholar]
- Verhoeven, J.T.W.; Van Dam, J.E.G.; Gaquere, L. Grow2build—Local cultivated hemp and flax as resource for biobased building materials. Acad. J. Civ. Eng. 2015, 33, 727–732. [Google Scholar] [CrossRef]
- Benmahiddine, F.; Cherif, R.; Bennai, F.; Belarbi, R.; Tahakourt, A.; Abahri, K. Effect of flax shives content and size on the hygrothermal and mechanical properties of flax concrete. Constr. Build. Mater. 2020, 262, 120077. [Google Scholar] [CrossRef]
- Khazma, M.; Goullieux, A.; Dheilly, R.M.; Rougier, A.; Quéneudec, M. Optimization of flax shive-cementitious composites: Impact of dif-ferent aggregate treatments using linseed oil. Ind. Crop. Prod. 2014, 61, 442–452. [Google Scholar] [CrossRef]
- Page, J.; Khadraoui, F.; Gomina, M.; Boutouil, M. Influence of different surface treatments on the water absorption capacity of flax fibres: Rheology of fresh reinforced-mortars and mechanical properties in the hardened state. Constr. Build. Mater. 2019, 199, 424–434. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Le, A.T.; Promis, G.; Laidoudi, B.; Crigny, A.; Dupre, B.; Langlet, T. Characterization of flax lime and hemp lime concretes: Hygric properties and moisture buffer capacity. Energy Build. 2015, 88, 91–99. [Google Scholar] [CrossRef]
- Rode, C.; Peuhkuri, R.; Time, B.; Svennberg, K.; Ojanen, T. Moisture Buffer Value of Building Materials. J. ASTM Int. 2007, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sedan, D.; Pagnoux, C.; Smith, A.; Chotard, T. Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction. J. Eur. Ceram. Soc. 2008, 28, 183–192. [Google Scholar] [CrossRef]
- Momoh, E.O.; Osofero, A.I. Behaviour of oil palm broom fibres (OPBF) reinforced concrete. Constr. Build. Mater. 2019, 221, 745–761. [Google Scholar] [CrossRef]
- Boulos, L. Effet d’un Revêtement de Dioxyde de Zirconium sur la Durabilité des Fibres de lin en Milieu Cimentaire. Ph.D. Thesis, Université de Sherbrooke, Sherbrooke, QC, Canada, 2018. [Google Scholar]
- NF EN 459, Norme Française. Chaux de Construction. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-en-4591/chaux-de-construction-partie-1-definitions-specifications-et-criteres-de-co/fa183246/45742 (accessed on 1 July 2021).
- Ardanuy, M.; Claramunt, J.; García-Hortal, J.A.; Barra, M. Fiber-matrix interactions in cement mortar composites reinforced with cellulosic fibers. Cellulose 2011, 18, 281–289. [Google Scholar] [CrossRef]
- Issaadi, N.; Nouviaire, A.; Belarbi, R.; Aït-Mokhtar, A. Moisture Characterization of Cementitious Material Properties: Assessment of Water Vapor Sorption Isotherm and Permeability Variation According to their Ages. Constr. Build. Mater. 2015, 83, 237–247. [Google Scholar] [CrossRef]
- Maaroufi, M.; Bennai, F.; Belarbi, R.; Abahri, K. Experimental and numerical highlighting of water vapor sorption hysteresis in the coupled heat and moisture transfers. J. Build. Eng. 2021, 40, 102321. [Google Scholar] [CrossRef]
- AFPC-AFREM. Durabilité des Bétons-Mode Opératoire Recommandé: Détermination de la Masse Volumique Apparente et de la Porosité Accessible à L’eau, Technical Report. In Proceedings of the Compte Rendu des Journées Techniques AFPC-AFREM, Toulouse, France, 11–12 December 1997. [Google Scholar]
- NF-EN12667. Performance Thermique des Matériaux et Produits Pour le Bâtiment—Détermination de la Résistance Thermique par la Méthode de la Plaque Chaude Gardée et la Méthode Flux Métrique-Produits de Haute et Moyenne Résistance Thermique (2001). Available online: https://www.boutique.afnor.org/en-gb/standard/nf-en-12667/thermal-performance-of-building-materials-and-products-determination-of-the/fa045167/18796 (accessed on 1 July 2021).
- NF-EN12664. Performance Thermique des Matériaux et Produits Pour le Bâtiment—Détermination de la Résistance Thermique par la Méthode de la Plaque Chaude Gardée et la Méthode Fluxmétrique—Produits Secs et Humides de Moyenne et Basse Résistance Thermique (2001). Available online: https://www.boutique.afnor.org/en-gb/standard/nf-en-12664/thermal-performance-of-building-materials-and-products-determination-of-the/fa045168/18797 (accessed on 1 July 2021).
- ASTM International. ASTM C109/C109M-02, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens); ASTM International: West Conshohocken, PA, USA, 2002; Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/C109C109M-02.htm (accessed on 1 July 2021).
- Yan, L.; Chouw, N.; Huang, L.; Kasal, B. Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr. Build. Mater. 2016, 112, 168–182. [Google Scholar] [CrossRef]
- Bennai, F.; Issaadi, N.; Abahri, K.; Belarbi, R.; Tahakourt, A. Experimental characterization of thermal and hygric properties of hemp concrete with consideration of the material age evolution. Heat Mass Transf. 2017, 54, 1189–1197. [Google Scholar] [CrossRef]
- Benmahiddine, F.; Bennai, F.; Cherif, R.; Belarbi, R.; Tahakourt, A.; Abahri, K. Experimental investigation on the influence of immersion/drying cycles on the hygrothermal and mechanical properties of hemp concrete. J. Build. Eng. 2020, 32, 101758. [Google Scholar] [CrossRef]
- Niyigena, C.; Amziane, S.; Chateauneuf, A. Multicriteria analysis demonstrating the impact of shiv on the properties of hemp concrete. Constr. Build. Mater. 2018, 160, 211–222. [Google Scholar] [CrossRef]
- Troppová, E.; Švehlík, M.; Tippner, J.; Wimmer, R. Influence of temperature and moisture content on the thermal conductiv-ity of wood-based fibreboards. Mater. Struct. 2015, 48, 4077–4083. [Google Scholar] [CrossRef]
- Parant, E. Mécaniques D’endommagement et Comportements Mécaniques d’un Composite Cimentaire Fibré Multiéchelle Sous Sollicitations Sévères: Fatigue, Choc, Corrosion. Ph.D. Thesis, École Nationale des Ponts et Chaussée, Paris, France, 2003. [Google Scholar]
ID | Type of Fibers | Fiber Content (%, by Volume) |
---|---|---|
Reference | / | 0 |
PS 2.5 | Palm Fibers | 2.5 |
HF 2.5 | Hemp Fibers | 2.5 |
PS 5.0 | Palm Fibers | 5.0 |
HF 5.0 | Hemp Fibers | 5.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zouaoui, Y.; Benmahiddine, F.; Yahia, A.; Belarbi, R. Hygrothermal and Mechanical Behaviors of Fiber Mortar: Comparative Study between Palm and Hemp Fibers. Energies 2021, 14, 7110. https://doi.org/10.3390/en14217110
Zouaoui Y, Benmahiddine F, Yahia A, Belarbi R. Hygrothermal and Mechanical Behaviors of Fiber Mortar: Comparative Study between Palm and Hemp Fibers. Energies. 2021; 14(21):7110. https://doi.org/10.3390/en14217110
Chicago/Turabian StyleZouaoui, Younes, Ferhat Benmahiddine, Ammar Yahia, and Rafik Belarbi. 2021. "Hygrothermal and Mechanical Behaviors of Fiber Mortar: Comparative Study between Palm and Hemp Fibers" Energies 14, no. 21: 7110. https://doi.org/10.3390/en14217110