# Study of the Radiation Flux Distribution in a Parabolic Dish Concentrator

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

^{2}and the lowest value of 4.5 MW/m

^{2}.

## 1. Introduction

## 2. Methodology

#### 2.1. Experimental Set

#### 2.2. Ray Tracing Simulation

^{2}, a standard sun shape, and a circumsolar ratio value of 0.02, which were determined experimentally by image analysis of the actual sun (Figure 5). A ray stability study is essential to eliminate the effect of the number of rays for the numerical resolution [32]. Therefore, variation of the maximum power regarding the number of rays was analyzed. The mesh size for the experimental images was 500 × 500, and for simulated images was set at 250 × 250.

#### 2.3. Global Optical Error of the System

#### 2.4. Generation of Effective Volumes

## 3. Results and Discussion

#### 3.1. Global Optical Error of the System

^{2}.

#### 3.2. Effective Volumes

^{2}, theoretical effective volumes present a length in the z-axis of ~2 cm and 1 cm in the x and y axes, while in experimental ones, lengths of less than 2 cm in the z-axis and 1 cm in the x and y-axes were observed.

^{2}with 7.6% and the largest at 4 MW/m

^{2}on the xz plane with 174%.

#### 3.3. Discussion

## 4. Conclusions

^{2}, and the lowest was 4.5 MW/m

^{2}. Higher flux theoretical effective volumes presented an oval shape; by decreasing the flux value, they are transformed into an ellipsoid. Higher flux experimental effective volumes also presented oval shapes by decreasing the flux value, a twist in the extreme sides was observed. This twist could be due to mechanical efforts, thermal efforts, or wind direction and speed; however, determining the origin is not important for this work because the determination of the global optical error of the system is done in the focal zone—high-intensity region—whereas this error might not be revealed at low-intensity regions.

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Ali, M.; Rady, M.; Attia, M.A.A.; Ewais, E.M.M. Consistent coupled optical and thermal analysis of volumetric solar receivers with honeycomb absorbers. Renew. Energy
**2020**, 145, 1849–1861. [Google Scholar] [CrossRef] - Raboaca, M.S.; Badea, G.; Enache, A.; Filote, C.; Rasoi, G.; Rata, M.; Lavric, A.; Felseghi, R.A. Concentrating solar power technologies. Energies
**2019**, 12, 1048. [Google Scholar] [CrossRef] [Green Version] - Wang, F.; Shuai, Y.; Tan, H.; Zhang, X.; Mao, Q. Heat transfer analyses of porous media receiver with multi-dish collector by coupling MCRT and FVM method. Sol. Energy
**2013**, 93, 158–168. [Google Scholar] [CrossRef] - Riveros-Rosas, D.; Sánchez-González, M.; Estrada, C.A. Three-dimensional analysis of a concentrated solar flux. J. Sol. Energy Eng. Trans. ASME
**2008**, 130, 0145031–0145034. [Google Scholar] [CrossRef] - Perez-Enciso, R.; Riveros-Rosas, D.; Sanchez, M.; Pérez-Rabago, C.A.; Arancibia-Bulnes, C.A.; Romero-Paredes, H.; Estrada, C.A. Three-dimensional analysis of solar radiation distribution at the focal zone of the solar furnace of IER-UNAM. Energy Procedia
**2014**, 57, 3031–3040. [Google Scholar] [CrossRef] [Green Version] - Gómez, F.; Gonzalez-aguilar, J.; Romero, M. Experimental 3D flux distribution of a 7 kW e-solar simulator. In Proceedings of the 17th SolarPACES Conference, Granada, Spain, 20 September 2011. [Google Scholar]
- Röger, M.; Herrmann, P.; Ulmer, S.; Ebert, M.; Prahl, C.; Göhring, F. Techniques to measure solar flux density distribution on large-scale receivers. J. Sol. Energy Eng. Trans. ASME
**2014**, 136, 1–10. [Google Scholar] [CrossRef] [Green Version] - Chen, X.; Xia, X.; Liu, H.; Li, Y.; Liu, B. Heat transfer analysis of a volumetric solar receiver by coupling the solar radiation transport and internal heat transfer. Energy Convers. Manag.
**2016**, 114, 20–27. [Google Scholar] [CrossRef] - Barreto, G.; Canhoto, P.; Collares-Pereira, M. Three-dimensional modelling and analysis of solar radiation absorption in porous volumetric receivers. Appl. Energy
**2018**, 215, 602–614. [Google Scholar] [CrossRef] - Chen, X.; Xia, X.L.; Dong, X.H.; Dai, G.L. Integrated analysis on the volumetric absorption characteristics and optical performance for a porous media receiver. Energy Convers. Manag.
**2015**, 105, 562–569. [Google Scholar] [CrossRef] - Wang, F.; Shuai, Y.; Tan, H.; Yu, C. Thermal performance analysis of porous media receiver with concentrated solar irradiation. Int. J. Heat Mass Transf.
**2013**, 62, 247–254. [Google Scholar] [CrossRef] - Du, S.; Li, M.J.; Ren, Q.; Liang, Q.; He, Y.L. Pore-scale numerical simulation of fully coupled heat transfer process in porous volumetric solar receiver. Energy
**2017**, 140, 1267–1275. [Google Scholar] [CrossRef] - Eccher, M.; Turrini, S.; Salemi, A.; Bettonte, M.; Miotello, A.; Brusa, R.S. Construction method and optical characterization of parabolic solar modules for concentration systems. Sol. Energy
**2013**, 94, 19–27. [Google Scholar] [CrossRef] - Wang, G.; Wang, F.; Shen, F.; Jiang, T.; Chen, Z.; Hu, P. Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator. Renew. Energy
**2020**, 146, 2351–2361. [Google Scholar] [CrossRef] - He, Y.L.; Wang, K.; Qiu, Y.; Du, B.C.; Liang, Q.; Du, S. Review of the solar flux distribution in concentrated solar power: Non-uniform features, challenges, and solutions. Appl. Therm. Eng.
**2019**, 149, 448–474. [Google Scholar] [CrossRef] - Xia, X.L.; Dai, G.L.; Shuai, Y. Experimental and numerical investigation on solar concentrating characteristics of a sixteen-dish concentrator. Int. J. Hydrogen Energy
**2012**, 37, 18694–18703. [Google Scholar] [CrossRef] - Coughenour, B.M.; Stalcup, T.; Wheelwright, B.; Geary, A.; Hammer, K.; Angel, R. Dish-based high concentration PV system with Köhler optics. Opt. Express
**2014**, 22, A211. [Google Scholar] [CrossRef] [PubMed] - Johnston, G. Focal region measurements of the 20 m
^{2}tiled dish at the Australian National University. Sol. Energy**1998**, 63, 117–124. [Google Scholar] [CrossRef] - Güven, H.M.; Bannerot, R.B. Derivation of universal error parameters for comprehensive optical analysis of parabolic troughs. J. Sol. Energy Eng. Trans. ASME
**1986**, 108, 275–281. [Google Scholar] [CrossRef] - Ulmer, S.; Reinalter, W.; Heller, P.; Lüpfert, E.; Martínez, D. Beam characterization and improvement with a flux mapping system for dish concentrators. J. Sol. Energy Eng. Trans. ASME
**2002**, 124, 182–188. [Google Scholar] [CrossRef] - Qiu, K.; Yan, L.; Ni, M.; Wang, C.; Xiao, G.; Luo, Z.; Cen, K. Simulation and experimental study of an air tube-cavity solar receiver. Energy Convers. Manag.
**2015**, 103, 847–858. [Google Scholar] [CrossRef] - Shuai, Y.; Xia, X.; Tan, H. Numerical simulation and experiment research of radiation performance in a dish solar collector system. Front. Energy Power Eng. China
**2010**, 4, 488–495. [Google Scholar] [CrossRef] - Jaramillo, O.A.; Pérez-Rábago, C.A.; Arancibia-Bulnes, C.A.; Estrada, C.A. A flat-plate calorimeter for concentrated solar flux evaluation. Renew. Energy
**2008**, 33, 2322–2328. [Google Scholar] [CrossRef] - Dähler, F.; Wild, M.; Schäppi, R.; Haueter, P.; Cooper, T.; Good, P.; Larrea, C.; Schmitz, M.; Furler, P.; Steinfeld, A. Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles. Sol. Energy
**2018**, 170, 568–575. [Google Scholar] [CrossRef] - Perez-Enciso, R.; Gallo, A.; Riveros-Rosas, D.; Fuentealba-Vidal, E.; Perez-Rábago, C. A simple method to achieve a uniform flux distribution in a multi-faceted point focus concentrator. Renew. Energy
**2016**, 93, 115–124. [Google Scholar] [CrossRef] - Lovegrove, K.; Burgess, G.; Pye, J. A new 500 m
^{2}paraboloidal dish solar concentrator. Sol. Energy**2011**, 85, 620–626. [Google Scholar] [CrossRef] [Green Version] - Biryukov, S. Determining the optical properties of PETAL, the 400 m
^{2}parabolic dish at Sede Boqer. J. Sol. Energy Eng. Trans. ASME**2004**, 126, 827–832. [Google Scholar] [CrossRef] - Gardon, R. An instrument for the direct measurement of intense thermal radiation. Rev. Sci. Instrum.
**1953**, 24, 366–370. [Google Scholar] [CrossRef] - Shannon, R.E. 1998_0002.pdf. In Proceedings of the 1998 Winter Simulation Conference, Washington, DC, USA, 13–16 December 1998; pp. 7–14. [Google Scholar]
- Shuai, Y.; Xia, X.L.; Tan, H.P. Numerical study of radiation characteristics in a dish solar collector system. J. Sol. Energy Eng. Trans. ASME
**2008**, 130, 0210011–0210018. [Google Scholar] [CrossRef] - Blanco, M.J.; Amieva, J.M.; Mancillas, A. The Tonatiuh Software Development Project: An Open Source Approach to the Simulation of Solar Concentrating Systems. In Proceedings of the Computers and Information in Engineering, Orlando, FL, USA, 5–11 November 2005; ASMEDC: Orlando, FL, USA, 2005; pp. 157–164. [Google Scholar]
- Lokeswaran, S.; Mallick, T.K.; Reddy, K.S. Design and analysis of dense array CPV receiver for square parabolic dish system with CPC array as secondary concentrator. Sol. Energy
**2020**, 199, 782–795. [Google Scholar] [CrossRef] - Neumann, A.; Groer, U. Experimenting with concentrated sunlight using the DLR solar furnace. Sol. Energy
**1996**, 58, 181–190. [Google Scholar] [CrossRef] - Neumann, A.; Witzke, A.; Jones, S.A.; Schmitt, G. Representative terrestrial solar brightness profiles. J. Sol. Energy Eng. Trans. ASME
**2002**, 124, 198–204. [Google Scholar] [CrossRef]

**Figure 1.**Parabolic Dish Concentrating Solar System located at the Solar Platform of Hermosillo in Hermosillo, Sonora, Mexico.

**Figure 2.**(

**a**) The 8 bits CCD camera used with a photographic lens and a linear filter, (

**b**) front part of the RLFP (after the experiments) with dimensions of 0.25 × 0.15 m

^{2}, and (

**c**) back of the RLFP where inlets and outlets for coolant flow are shown.

**Figure 8.**Real concentrated solar radiation spot in the focal zone: (

**a**) Gray Scale and (

**b**) Real flux values (MW/m

^{2}).

**Figure 9.**Qualitative matching of the solar radiation distribution profiles (theoretical and experimental) when x = 0, y = [−3.3], varying the global optical error from 0 to 4 mrad with increments of 1 mrad.

**Figure 10.**Quantitative comparison of solar radiation distribution profiles varying the error from 2.0 to 3.0 mrad.

**Figure 11.**Experimental effective volumes of different flux values: (

**a**) 10, (

**b**) 9, (

**c**) 8, (

**d**) 7, (

**e**) 6, (

**f**) 5, (

**g**) 4.5, and (

**h**) 4 MW/m

^{2}.

**Figure 12.**Theoretical effective volumes of different flux values: (

**a**) 10, (

**b**) 9, (

**c**) 8, (

**d**) 7, (

**e**) 6, (

**f**) 5, (

**g**) 4.5, and (

**h**) 4 MW/m

^{2}.

Parabolic Dish Concentrator | RLFP | |
---|---|---|

Measurements | 1.65 × 1.65 m^{2} | 0.15 × 0.25 m^{2} |

Focal point | 1.5 m | - |

Reflectivity | 0.9 ^{1} | 0 |

Global optical error of the system | TBD | - |

Distance from the vertex | - | 1.5 m |

^{1}This value was provided by the technical data sheet of the parabolic dish concentrator.

Numbers of Rays (Millions) | Maximum Power (W) | Uncertainty (%) |
---|---|---|

0.01 | 3.36 × 10^{7} | 48.6 |

0.05 | 1.73 × 10^{7} | 37.5 |

1 | 1.08 × 10^{7} | 6.5 |

5 | 1.01 × 10^{7} | 1.5 |

10 | 9.94 × 10^{6} | −0.5 |

15 | 9.99 × 10^{6} | 0.2 |

20 | 9.96 × 10^{6} | 2.2 |

25 | 9.75 × 10^{6} | −1.1 |

30 | 9.85 × 10^{6} | 1.1 |

35 | 9.75 × 10^{6} | 0.5 |

40 | 9.70 × 10^{6} | −0.5 |

45 | 9.75 × 10^{6} |

Flux | XY Plane | XZ Plane | YZ Plane | ||||||
---|---|---|---|---|---|---|---|---|---|

(MW/m^{2}) | Real (cm ^{2}) | Theoretical (cm^{2)} | Difference (%) | Real (cm ^{2}) | Theoretical (cm^{2)} | Difference (%) | Real (cm ^{2}) | Theoretical (cm^{2)} | Difference (%) |

10 | 0.21 | 0.28 | 7.6 | 0.31 | 0.50 | 18.5 | 0.32 | 0.55 | 22.7 |

9 | 0.41 | 0.53 | 12.2 | 0.90 | 0.28 | 28.4 | 0.64 | 0.94 | 29.8 |

8 | 0.64 | 0.79 | 14.3 | 0.95 | 1.43 | 48.6 | 0.99 | 1.42 | 43.5 |

7 | 0.89 | 1.13 | 24.9 | 1.30 | 1.89 | 58.6 | 1.33 | 2.21 | 88.3 |

6 | 1.17 | 1.44 | 27.0 | 1.80 | 2.68 | 88.1 | 1.90 | 2.71 | 80.7 |

4 | 1.88 | 2.40 | 52.1 | 3.40 | 5.07 | 167.0 | 3.37 | 5.11 | 174.0 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cisneros-Cárdenas, N.A.; Cabanillas-López, R.; Pérez-Enciso, R.; Martínez-Rodríguez, G.; García-Gutiérrez, R.; Pérez-Rábago, C.; Calleja-Valdez, R.; Riveros-Rosas, D.
Study of the Radiation Flux Distribution in a Parabolic Dish Concentrator. *Energies* **2021**, *14*, 7053.
https://doi.org/10.3390/en14217053

**AMA Style**

Cisneros-Cárdenas NA, Cabanillas-López R, Pérez-Enciso R, Martínez-Rodríguez G, García-Gutiérrez R, Pérez-Rábago C, Calleja-Valdez R, Riveros-Rosas D.
Study of the Radiation Flux Distribution in a Parabolic Dish Concentrator. *Energies*. 2021; 14(21):7053.
https://doi.org/10.3390/en14217053

**Chicago/Turabian Style**

Cisneros-Cárdenas, Nidia Aracely, Rafael Cabanillas-López, Ricardo Pérez-Enciso, Guillermo Martínez-Rodríguez, Rafael García-Gutiérrez, Carlos Pérez-Rábago, Ramiro Calleja-Valdez, and David Riveros-Rosas.
2021. "Study of the Radiation Flux Distribution in a Parabolic Dish Concentrator" *Energies* 14, no. 21: 7053.
https://doi.org/10.3390/en14217053