Effect of Different Technologies on Performance Enhancement of the Micro-Combustor for the Micro Thermophotovoltaic Application: A Review
Abstract
:1. Introduction
1.1. Types of Micropower Generation Devices
1.1.1. Micro Engine System
1.1.2. Micro Fuel Cell
1.1.3. Micro Thermoelectric System
1.1.4. Micro Thermophotoelectric System (Micro-TPV)
1.2. Research Progress in the Micro Combustor of the Micro Thermophotovoltaic System
1.2.1. Problems and Challenges in the Micro Thermophotovoltaic System
1.2.2. Steady Combustion Method for Micro-Scale Combustion
- (1)
- Steady combustion in the reflux area
- (2)
- Thermal management and steady combustion
- (3)
- Catalytic combustion
1.3. Outline of This Review
2. Effects of Non-Premixed and Premixed Condition
2.1. Premixed Combustion
2.1.1. Effect of Fuel/Air Equivalence Ratio on Combustion Characteristics
2.1.2. Effects of Mass Flow Rate on Combustion Characteristic
2.2. Non-Premixed Combustion
2.2.1. Effects of Fuel/Air Equivalence Ratios on Combustion Characteristics
2.2.2. Effects of Fuel Flow Rate
2.3. Comparison and Summary
3. Optimal Design of Combustor Geometrical Construction
3.1. Effect of Basic Geometrical Parameter on Combustion Characteristics
3.1.1. Effect of Wall Thickness
3.1.2. Effects of Combustor Length
3.2. Effect of Wall Material on Combustion Characteristics
3.2.1. Effects of Wall Material on Thermal Performance
3.2.2. Effects of Wall Material on Stable Combustion Limit
3.2.3. Effect of Wall Material on Free Radicals
3.3. Effect of Structural Improvement on Combustion Characteristics
3.3.1. Cavity
- (1)
- Flame-anchoring mechanisms of micro cavity-combustors
- (2)
- Effect of the depth and length of cavity
- (4)
- Effect of the cavity position
3.3.2. Facing Step
- (1)
- Effect of surface step on combustion characteristics
- (2)
- Effect of the cross-section types of steps
- (3)
- Effect of the step length and height
- (4)
- Effect of increase in the number of steps
3.3.3. Bluff Body
- (1)
- Effect of blunt body on combustion characteristic
- (2)
- Effect of shapes of bluff body
- (3)
- Effects of blockage ratio
- (4)
- Bluff body effect of two side slits
3.3.4. Curved Micro-Combustor
3.3.5. Flame Preheating and Holder Channels
3.3.6. Baffle
4. Special Structure Combustor
4.1. Swiss Roll Combustor
4.2. New Special Structures
4.3. Multiple-Channel Micro Combustor
4.3.1. Comparison of Single-Channel Combustors
4.3.2. Effect of Different Configurations of Multiple-Channel Micro Combustor
4.4. Summary
4.5. Porous Media Micro Combustor
4.5.1. Comparison of the Micro Combustor without and with Porous Medium
4.5.2. Effects of Properties of Porous Medium
- (1)
- Effect of porous media porosity
- (2)
- Effect of porous media material
4.5.3. Effect of Filling Position and Folding Schemes
4.5.4. Summary
4.6. Catalytic Micro-Combustion
4.6.1. Combustion Characteristics
4.6.2. Stability and Flammability Limits of Catalytic Combustion
4.6.3. Effect of Geometry
4.6.4. Effect of Wall Materials
4.6.5. Effect of Gap Size
5. Summary and Outlook
- (1)
- Stabilizing combustion through heat recirculation, surface chemical treatment, and thermal management;
- (2)
- Different flame characteristics under different combustion condition (premixed and non-premixed), and the effects of fuel mass flow rate and fuel/air equivalence ratio;
- (3)
- Optimal design of combustor geometrical construction, the adjustment of the basic geometrical parameter and wall material, cavity, facing step, baffle, flame holder and preheating channels, curved micro-combustor, bluff body, some special structures, and multiple-channel micro combustor;
- (4)
- Combustion characteristics of porous media micro combustors and improvement;
- (5)
- Catalytic combustion in micro burners is reviewed and the role of key operation parameters is elucidated in this paper.
- (1)
- Combined with low-temperature combustion technology, further optimization of the application of micro combustors will continue to be the focus of research;
- (2)
- Homogeneous, catalytic, homogeneous-heterogeneous, and excess enthalpy micro burners;
- (3)
- Coupled endo- and exothermic reactors for tapping unconventional energy sources, such as natural gas and biomass, will flourish;
- (4)
- High wall temperature and stable combustion can be achieved by new micro-combustors. Emitting power will be enhanced and it will improve the overall efficiency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, D. Transient growth of flow disturbances in triggering a Rijke tube combustion instability. Combust. Flame 2012, 159, 2126–2137. [Google Scholar] [CrossRef]
- Yang, G.; Fan, A. Numerical study of an integrated miniature ejector for catalytic micro-combustors. Chem. Eng. Process.-Process Intensif. 2021, 160, 108295. [Google Scholar] [CrossRef]
- Cai, T.; Becker, S.M.; Cao, F.; Wang, B.; Tang, A.; Fu, J.; Han, L.; Sun, Y.; Zhao, D. NOx Emission performance assessment on a perforated plate-implemented premixed ammonia-oxygen micro-combustion system. Chem. Eng. J. 2021, 417, 128033. [Google Scholar] [CrossRef]
- Cai, T.; Zhao, D.; Wang, B.; Li, J.; Guan, Y. NOx emission and thermal performances studies on premixed ammonia-oxygen combustion in a CO2-free micro-planar combustor. Fuel 2020, 280, 118554. [Google Scholar] [CrossRef]
- Lee, S.J.; Chang, C.; Cha, S.W. Design and fabrication of a micro fuel cell array with “flip-flop” interconnection. J. Power Sources 2002, 112, 410–418. [Google Scholar] [CrossRef]
- Glatz, W.; Muntwyler, S.; Hierold, C. Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sens. Actuators A Phys. 2006, 132, 337–345. [Google Scholar] [CrossRef]
- Cai, T.; Zhao, D. Effects of fuel composition and wall thermal conductivity on thermal and NOx emission performances of an ammonia/hydrogen-oxygen micro-power system. Fuel Process. Technol. 2020, 209, 106527. [Google Scholar] [CrossRef]
- Mehra, A.; Zhang, X.; Ayon, A.A.; Waitz, I.A.; Schmidt, M.A.; Spadaccini, C.M.; Microelectromech, J. A six-wafer combustion system for a silicon micro gas turbine engine. J. Microelectromech. Syst. 2000, 94, 517–527. [Google Scholar] [CrossRef]
- Cai, T.; Zhao, D.; Sun, Y.; Ni, S.; Li, W. Evaluation of NOx Emission Characteristics in a CO2-Free Micro-Power System by Implementing a Perforated Plate. Renew. Sustain. Energy Rev. 2021, 145, 111150. [Google Scholar] [CrossRef]
- Kaisare, N.S.; Vlachos, D.G. A review on micro combustion: Fundamentals, devices and applications. Prog. Energy Combust. Sci. 2012, 38, 321–359. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiaqiang, E.; Deng, Y.; Pham, M.; Zuo, W.; Peng, Q.; Yin, Z. Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled marine diesel engine. Energy Convers. Manag. 2018, 159, 244–253. [Google Scholar] [CrossRef]
- Du, L.; Shao, Y.; Sun, J. Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy. 2016, 29, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Kamarudin, S.K.; Daud, W.R.W.; Ho, S.L.; Hasran, U.A. Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). J. Power Sources 2007, 163, 743–754. [Google Scholar] [CrossRef]
- Zhao, T.S.; Xu, C.; Chen, R.; Yang, W.W. Mass transport phenomena in direct methanol fuel cells. Prog. Energy Combust. Sci. 2009, 35, 275–292. [Google Scholar] [CrossRef]
- He, W.; Zhang, G.; Zhang, X.; Ji, J.; Li, G.; Zhao, X. Recent development and application of thermoelectric generator and cooler. Appl. Energy 2015, 143, 1–25. [Google Scholar] [CrossRef]
- Tan, D.; Chen, Z.; Li, J.; Luo, J.; Yang, D.; Cui, S.; Zhang, Z. Effects of Swirl and Boiling Heat Transfer on the Performance Enhancement and Emission Reduction for a Medium Diesel Engine Fueled with Biodiesel. Processes 2021, 9, 568. [Google Scholar] [CrossRef]
- Ji, C.; Zhao, D. Two-dimensional lattice Boltzmann investigation of sound absorption of perforated orifices with different geometric shapes. Aerosp. Sci. Technol. 2014, 39, 40–47. [Google Scholar] [CrossRef]
- Yang, W.; Chua, K.; Pan, J.; Jiang, D.; An, H. Development of micro-thermophotovoltaic power generator with heat recuperation. Energy Convers. Manag. 2014, 78, 81–87. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Ding, J.; Chen, J.; Liao, G.; Zhang, F.; Luo, B. Process in micro-combustion and energy conversion of micro power system: A review. Energy Convers. Manag. 2021, 246, 114664. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, J.; Tan, D.; Feng., Z.; Luo, J.; Tan, Y.; Huang, Y. The effects of Fe2O3 based DOC and SCR catalyst on the combustion and emission characteristics of a diesel engine fueled with biodiesel. Fuel 2021, 290, 120039. [Google Scholar] [CrossRef]
- Yang, W.; Chou, S.; Shu, C.; Xu, H.; Li, Z.W.; Li, D.T.; Pan, J.F. Microscale combustion research for application to micro thermophotovoltaic systems. Energy Convers. Manag. 2003, 44, 2625–2634. [Google Scholar] [CrossRef]
- Yang, W.; Chou, S.; Shu, C.; Xu, H.; Li, Z.W. Development of a prototype micro-thermophotovoltaic power generator. J. Phys. D Appl. Phys. 2004, 37, 1017–1020. [Google Scholar] [CrossRef]
- Zhao, D.; Li, X. A review of acoustic dampers applied to combustion chambers in aerospace industry. Prog. Aerosp. Sci. 2015, 74, 114–130. [Google Scholar] [CrossRef]
- Zhao, D.; Lu, Z.; Zhao, H.; Li, X.; Wang, B.; Liu, P. A review of active control approaches in stabilizing combustion systems in aerospace industry. Prog. Aerosp. Sci. 2018, 97, 35–60. [Google Scholar] [CrossRef]
- Ju, Y.; Kaoru, M. Microscale combustion: Technology development and fundamental research. Prog. Energy Combust. Sci. 2011, 37, 669–715. [Google Scholar] [CrossRef]
- Yang, W.; Chou, S.; Shu, C.; Xu, H.; Li, Z.W. Development of micro thermophotovoltaic system. Appl. Phys. Lett. 2002, 81, 5255–5257. [Google Scholar] [CrossRef]
- Yang, W.; Chou, S.; Shu, C.; Xu, H.; Li, Z.W. Design, fabrication, and testing of a prototype micro-thermophotovoltaic system. Microelectromech. Syst. 2004, 13, 851–856. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Investigation of bluff-body micro-flameless combustion. Energy Convers. Manag. 2014, 88, 120–128. [Google Scholar] [CrossRef]
- Lloyd, S.; Weinberg, F. A burner for mixtures of very low heat content. Nature 1974, 251, 47. [Google Scholar] [CrossRef]
- Weinberg, F.J. The first half-million years of combustion research and today’s burning problems. Prog Energ. Combust. 1979, 1, 17–31. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Liu, G.; Zhang, Z.; Han, D.; Chen, J.; Wei, K.; Gong, J.; Yin, Z. Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model. Appl. Energy 2019, 243, 321–335. [Google Scholar] [CrossRef]
- Kyritsis, D.C.; Guerrero-Arias, I.; Roychoudhury, S.; Gomez, A. Mesoscale power generation by a catalytic combustor using electrosprayed liquid hydrocarbons. Proc. Combust. Inst. 2002, 29, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Kyritsis, D.C.; Roychoudhury, S.; McEnally, C.S.; Pfefferle, L.D.; Gomez, A. Mesoscale combustion: A first step towards liquid fueled batteries. Exp. Therm. Fluid Sci. 2004, 28, 763–770. [Google Scholar] [CrossRef]
- Gomez, A.; Berry, J.J.; Roychoudhury, S.; Coriton, B.; Huthl, J. From jet fuel to electric power using a mesoscale, efficient Stirling cycle. Proc. Combust. Inst. 2007, 31, 3251–3259. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiaqiang, E.; Chen, J.; Zhu, H.; Zhao, X.; Han, D.; Zuo, W.; Peng, Q.; Gong, J.; Yin, Z. Effects of low-level water addition on spray, combustion and emission characteristics of a medium speed diesel engine fueled with biodiesel fuel. Fuel 2019, 239, 245–262. [Google Scholar] [CrossRef]
- Markatou, P.; Pfefferle, L.D.; Smooke, M.D. A computational study of methane-air combustion over heated catalytic and non-catalytic surfaces. Combust. Flame 1993, 93, 185–201. [Google Scholar] [CrossRef]
- Spadaccini, C.M.; Zhang, X.; Cadou, C.P.; Miki, N.; Waitz, I.A. Preliminary development of a hydrocarbon-fueled catalytic micro-combustor. Sens. Actuators A Phys. 2003, 103, 219–224. [Google Scholar] [CrossRef]
- Zuo, W.; Jiaqiang, E.; Liu, H.; Peng, Q.; Zhao, X.; Zhang, Z. Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer. Appl. Energy 2016, 184, 77–87. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, L.; He, Z.; Dong, S.; Tan, H. Comparative study of combustion and thermal performance in a swirling micro combustor under premixed and non-premixed modes. Appl. Therm. Eng. 2019, 160, 114110. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiaqiang, E.; Chen, J.; Zhao, X.; Zhang, B.; Deng, Y.; Peng, Q.; Yin, Z. Effects of boiling heat transfer on the performance enhancement of a medium speed diesel engine fueled with diesel and rapeseed methyl ester. Appl. Therm. Eng. 2020, 169, 114984. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, Z.; Geng, N.; Jiang, S.; Xie, X. Appointment Window Scheduling with Wait-Dependent Abandonment for Elective Inpatient Admission. Int. J. Prod. Res. 2021, 1977407. [Google Scholar] [CrossRef]
- Miesse, C.; Masel, R.I.; Short, M. Diffusion flame instabilities in a 0.75 mm non-premixed micro burner. Proc. Combust. Inst. 2005, 30, 2499–2507. [Google Scholar] [CrossRef]
- Prakash, S.; Armijo, A.D.; Masel, R.I. Shannon MA. Flame dynamics and structure within sub-millimeter combustors. AICHE J. 2010, 53, 1568–1577. [Google Scholar] [CrossRef]
- Ju, Y.; Xu, B. Studies on non-premixed flame streets in a mesoscale channel. Proc. Combust. Inst. 2009, 32, 1375–1382. [Google Scholar] [CrossRef]
- Li, L.; Yuan, Z.; Xiang, Y.; Fan, A. Numerical investigation on mixing performance and diffusion combustion characteristics of H2 and air in planar micro-combustor. Int. J. Hydrogen Energy 2018, 43, 12491–12498. [Google Scholar] [CrossRef]
- Lee, M.J.; Kim, N.I. The stabilization of a methane-air edge flame within a mixing layer in a narrow channel. Combust. Flame 2017, 157, 201–203. [Google Scholar] [CrossRef]
- Pham, T.K.; Dunn-Rankin, D.; Sirignano, W.A. Flame structure in small-scale liquid film combustors. Proc. Combust. Inst. 1997, 31, 3269–3275. [Google Scholar] [CrossRef]
- Ning, D.; Liu, Y.; Xiang, Y.; Fan, A. Experimental investigation on non-premixed methane/air combustion in Y-shaped meso-scale combustors with/without fibrous porous media. Energy Convers. Manag. 2017, 138, 22–29. [Google Scholar] [CrossRef]
- Zuo, W.; Jiaqiang, E.; Hu, W.; Jin, Y.; Han, D. Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor. Energy 2017, 126, 1–12. [Google Scholar] [CrossRef]
- Zamashchikov, V. Experimental investigation of gas combustion regimes in narrow tubes. Combust. Flame 1997, 108, 357–359. [Google Scholar] [CrossRef]
- Miller, F.J.; Dietrich, D.L.; Struk, P.; Tien, J.S.; Mellish, B.P. Premixed flames stabilized on or propagating inside microtubes. In Proceedings of the Fourth Joint Meeting of the US Sections of the Combustion Institute, Philadelphia, PA, USA, 23 March 2005; pp. 20–23. [Google Scholar]
- Miesse, C.M.; Masel, R.I.; Jensen, C.D.; Shannon, M.A.; Short, M. Submillimeter-scale combustion. AICHE J. 2004, 50, 3206–3214. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Li, J.; Ji, H.; Tan, D.; Luo, J.; Jiang, Y.; Yang, D.; Cui, S. Effects of different mixture ratios of methanol-diesel on the performance enhancement and emission reduction for a diesel engine. Processes 2021, 9, 1366. [Google Scholar] [CrossRef]
- Yang, W.; Chou, S.; Shu, C.; Li, Z.W.; Xue, H. Study of catalytic combustion and its effect on micro thermophotovoltaic power generators. J. Phys. D Appl. Phys. 2005, 38, 4252. [Google Scholar] [CrossRef]
- Wan, J.; Fan, A.; Liu, Y.; Yao, H.; Liu, W.; Gou, X.; Zhao, D. Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities. Combust. Flame 2015, 162, 1035–1045. [Google Scholar] [CrossRef]
- Wan, J.; Shang, C.; Zhao, H. Anchoring mechanisms of methane/air premixed flame in a mesoscale diverging combustor with cylindrical flame holder. Fuel 2018, 232, 591–599. [Google Scholar] [CrossRef]
- Karagiannidis, S. Hetero-/homogeneous combustion and stability maps in methane-fueled catalytic microreactors. In Catalytic Microreactors for Portable Power Generation; Springer: Berlin/Heidelberg, Germany, 2011; pp. 55–66. [Google Scholar]
- Norton, D.G.; Vlachos, D.G. A CFD study of propane/air micro flame stability. Combust. Flame 2004, 138, 97–107. [Google Scholar] [CrossRef]
- Hua, J.; Wu, M.; Kumar, K. Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers. Chem. Eng. Sci. 2005, 60, 3497–3506. [Google Scholar] [CrossRef]
- Li, J.; Chou, S.; Yang, W.; LI, Z.W. A numerical study on premixed micro-combustion of CH4–air mixture: Effects of combustor size, geometry and boundary conditions on flame temperature. Chem. Eng. J. 2009, 150, 213–222. [Google Scholar] [CrossRef]
- Chen, J.; Yan, L.; Song, W.; Xu, D. Effect of heat and mass transfer on the combustion stability in catalytic micro-combustors. Appl. Therm. Eng. 2018, 131, 750–765. [Google Scholar] [CrossRef]
- Wan, J.; Fan, A.; Yao, H. Effect of the length of a plate flame holder on flame blowout limit in a micro-combustor with preheating channels. Combust. Flame 2016, 170, 53–62. [Google Scholar] [CrossRef]
- Gauthier, G.P.; Watson, G.M.G.; Bergthorson, J.M. Burning rates and temperatures of flames in excess-enthalpy burners: A numerical study of flame propagation in small heat-recirculating tubes. Combust. Flame 2014, 161, 2348–2360. [Google Scholar] [CrossRef]
- Lu, Q.; Pan, J.; Yang, W.; Pan, Z.; Tang, A.; Zhang, Y. Effects of products from heterogeneous reactions on homogeneous combustion for H2/O2 mixture in the micro combustor. Appl. Therm. Eng. 2016, 102, 897–903. [Google Scholar] [CrossRef] [Green Version]
- Zuo, W.; Zhang, Y.; Li, Q.; Li, J.; He, Z. Numerical investigations on hydrogen-fueled micro-cylindrical combustors with cavity for micro-thermophotovoltaic applications. Energy 2021, 223, 120098. [Google Scholar] [CrossRef]
- Pan, J.; Huang, J.; Li, D.; Yang, W.; Tang, W.; Xue, H. Effects of major parameters on micro-combustion for thermophotovoltaic energy conversion. Appl. Therm. Eng. 2007, 27, 1089–1095. [Google Scholar] [CrossRef]
- Li, J.; Chou, S.; Li, Z.; Yang, W. Characterization of wall temperature and radiation power through cylindrical dump micro-combustors. Combust. Flame 2009, 156, 1587–1593. [Google Scholar] [CrossRef]
- Li, J.; Chou, S.; Huang, G.; Yang, W.; Li, Z. Study on premixed combustion in cylindrical micro combustors: Transient flame behavior and wall heat flux. Exp. Therm. Fluid Sci. 2009, 33, 764–773. [Google Scholar] [CrossRef]
- Norton, D.G.; Vlachos, D.G. Combustion characteristics and flame stability at the microscale: A CFD study of premixed methane/air mixtures. Chem. Eng. Sci. 2003, 58, 4871–4882. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Cai, L.; Li, J.; Ding, J.; Chen, J.; Luo, B. Effects analysis on the catalytic combustion and heat transfer performance enhancement of a non-premixed hydrogen/air micro combustor. Fuel 2021, 309, 122125. [Google Scholar] [CrossRef]
- Wenming, Y.; Siawkiang, C.; Chang, S.; Hong, X.; Zhiwang, L. Effect of wall thickness of micro-combustor on the performance of micro-thermophotovoltaic power generators. Sens. Actuators A Phys. 2005, 119, 441–445. [Google Scholar] [CrossRef]
- Carroni, R.; Griffin, T.; Mantzaras, J.; Reinke, M. High-pressure experiments and modeling of methane/air catalytic combustion for power-generation applications. Catal. Today 2003, 83, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Dogwiler, U.; Benz, P.; Mantzaras, J. Two-dimensional modelling for catalytically stabilized combustion of a lean methane-air mixture with elementary homogeneous and heterogeneous chemical reactions. Combust. Flame 1999, 116, 243–258. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Gutmark, E.; de Goey, P. A review of cavity-based trapped vortex, ultra-compact, high-g, inter-turbine combustors. Prog. Energy Combust. Sci. 2018, 66, 42–82. [Google Scholar] [CrossRef] [Green Version]
- Karagiannidis, S.; Mantzaras, J.; Boulouchos, K. Stability of hetero-/homogeneous combustion in propane- and methane-fueled catalytic microreactors: Channel confinement and molecular transport effects. Proc. Combust. Inst. 2011, 33, 3241–3249. [Google Scholar] [CrossRef]
- Chen, J.; Song, W. Optimal combustor dimensions for the catalytic combustion of methane-air mixtures in micro-channels. Energy Convers. Manag. 2017, 134, 197–207. [Google Scholar] [CrossRef]
- Stefanidis, G.D.; Vlachos, D.G. Intensification of steam reforming of natural gas: Choosing combustible fuel and reforming catalyst. Chem. Eng. Sci. 2010, 65, 398–404. [Google Scholar] [CrossRef]
- Stefanidis, G.D.; Vlachos, D.G. High vs. low temperature reforming for hydrogen production via microtechnology. Chem. Eng. Sci. 2009, 64, 4856–4865. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Z.; Yang, W.; Zhou, J.; Liu, J.; Wang, Z.; Cen, K. Instability of flame in micro-combustor under different external thermal environment. Exp. Therm. Fluid Sci. 2011, 35, 1451–1457. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Yang, W.; Liu, J.; Wang, Z.; Cen, K. Improvement of micro-combustion stability through electrical heating. Appl. Therm. Eng. 2009, 29, 2373–2378. [Google Scholar] [CrossRef]
- Mettler, M.S.; Stefanidis, G.D.; Vlachos, D.G. Enhancing stability in parallel plate microreactor stacks for syngas production. Chem. Eng. Sci. 2011, 66, 1051–1059. [Google Scholar] [CrossRef]
- Yadav, S.; Yamasani, P.; Kumar, S. Experimental studies on a micro power generator using thermo-electric modules mounted on a micro-combustor. Energy Convers. Manag. 2015, 99, 1–7. [Google Scholar] [CrossRef]
- Singh, T.; Marsh, R.; Min, G. Development and investigation of a non-catalytic self-aspirating meso-scale premixed burner integrated thermoelectric power generator. Energy Convers. Manag. 2016, 117, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Huang, W.; Tang, W.; Zhang, L.; Li, L.; Ran, J.; Yang, Z. Numerical study on catalytic combustion and extinction characteristics of premixed methane-air in micro flatbed channel under different parameters of operation and wall. Fuel 2016, 180, 659–667. [Google Scholar] [CrossRef]
- Zuo, W.; Li, Q.; He, Z.; Li, Y. Numerical investigations on thermal performance enhancement of hydrogen-fueled micro planar combustors with injectors for micro-thermophotovoltaic applications. Energy. 2020, 194, 116904. [Google Scholar] [CrossRef]
- Yang, X.; He, Z.; Dong, K.; Tan, H. Enhancement of thermal performance by converging-diverging channel in a micro tube combustor fueled by premixed hydrogen/air. Int. J. Hydrogen Energy 2019, 44, 1213–1226. [Google Scholar] [CrossRef]
- Gruber, M.R.; Donbar, J.M.; Carter, C.D.; Hsu, K.Y. Mixing and combustion studies using cavity-based flame holders in a supersonic flow. J. Propuls. Power 2004, 44, 769–778. [Google Scholar] [CrossRef]
- Nakaya, S.; Hikichi, Y.; Nakazawa, Y.; Sakaki, K.; Choi, M.; Tsue, M.; Kono, M.; Tomioka, S. Ignition and supersonic combustion behavior of liquid ethanol in a scramjet model combustor with cavity flame holder. Proc. Combust. Inst. 2015, 35, 2091–2099. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Sun, M.; Zhang, S.; Wang, Z. Simulations of combustion with normal and angled hydrogen injection in a cavity-based supersonic combustor. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2014, 228, 530–541. [Google Scholar] [CrossRef]
- Zhao, D.; Guan, Y.; Reinecke, A. Characterizing Hydrogen-fuelled pulsating combustion on thermodynamic properties of a combustor. Commun. Phys. 2019, 2, 44. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Yang, W.; Fan, A.W.; Liu, Y.; Yao, H.; Liu, W.; Du, Y.; Zhao, D. A numerical investigation on combustion characteristics of H2/air mixture in a micro-combustor with wall cavities. Int. J. Hydrogen Energy 2014, 39, 8138–8146. [Google Scholar] [CrossRef]
- Yang, W.; Fan, A.; Yao, H. Effect of inlet temperature on combustion efficiency of lean H2/air mixtures in a micro-combustor with wall cavities. Appl. Therm. Eng. 2016, 107, 837–843. [Google Scholar] [CrossRef]
- Wan, J.; Fan, A. Recent progress in flame stabilization technologies for combustion-based micro energy and power systems. Fuel 2021, 286, 119391. [Google Scholar] [CrossRef]
- Wan, J.; Fan, A.; Yao, H.; Liu, W. Flame-anchoring mechanisms of a micro cavity-combustor for premixednH2/air flame. Chem. Eng. J. 2015, 275, 17–26. [Google Scholar] [CrossRef]
- Li, L.; Wei, Y.; Fan, A. Effect of the cavity aft ramp angle on combustion efficiency of lean hydrogen/air flames in a micro cavity-combustor. Int. J. Hydrogen Energy 2019, 44, 5623–5632. [Google Scholar] [CrossRef]
- Zhang, P.; Ran, J.; Li, L.; Du, X.; Qi, W.; Niu, J.; Yang, L. Effects of convex cavity structure, position and number on conversion of methane catalytic combustion and extinction limit in a micro-channel: A numerical study. Chem. Eng. Process. Process. Intensif. 2017, 117, 58–69. [Google Scholar] [CrossRef]
- Wan, J.; Fan, A.; Yao, H.; Liu, W.; Gou, X.; Zhao, D. The impact of channel gap distance on flame splitting limit of H2/air mixture in microchannels with wall cavities. Int. J. Hydrogen Energy 2014, 29, 11308–11315. [Google Scholar] [CrossRef]
- Su, Y.; Song, J.; Chai, J.; Cheng, Q.; Luo, Z.; Lou, C.; Fu, P. Numerical investigation of a novel micro combustor with double-cavity for micro-thermophotovoltaic system. Energy Convers. Manag. 2015, 106, 173–180. [Google Scholar] [CrossRef]
- Chou, S.; Yang, W.; Li, J.; Li, Z. Porous media combustion for micro thermophotovoltaic system applications. Appl. Energy 2010, 87, 2862–2867. [Google Scholar] [CrossRef]
- Alipoor, A.; Mazaheri, K. Studying the repetitive extinction-ignition dynamics for lean premixed hydrogen-air combustion in a heated microchannel. Energy 2014, 73, 367–379. [Google Scholar] [CrossRef]
- Faramarzpour, H.; Mazaheri, K.; Alipoor, A. Effect of backward facing step on radiation efficiency in a micro combustor. Int. J. Therm. Sci. 2018, 132, 129–136. [Google Scholar] [CrossRef]
- Akhtar, S.; Kurnia, J.C.; Shamim, T. A three-dimensional computational model of H2–air premixed combustion in non-circular micro-channels for a thermo-photovoltaic (TPV) application. Appl. Energy 2015, 152, 47–57. [Google Scholar] [CrossRef]
- Yang, W.; Chou, S.; Shu, C.; Li, Z.; Xue, H. Combustion in micro-cylindrical combustors with and without a backward facing step. Appl. Therm. Eng. 2002, 22, 1777–1787. [Google Scholar] [CrossRef]
- Peng, Q.; Wu, Y.; Jiaqiang, E.; Yang, W.; Xu, H.; Li, Z. Combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube. Appl. Energy 2019, 242, 424–438. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Zuo, W.; Liu, X.; Peng, Q.; Deng, Y.; Zhu, H. Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step. Appl. Energy 2016, 175, 337–345. [Google Scholar] [CrossRef]
- Zuo, W.; Jiaqiang, E.; Liu, X.; Peng, Q.; Deng, Y.; Zhu, H. Orthogonal Experimental Design and Fuzzy Grey Relational Analysis for emitter efficiency of the micro-cylindrical combustor with a step. Appl. Therm. Eng. 2016, 103, 945–951. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Zuo, W.; Liu, X.; Peng, Q.; Deng, Y.; Zhu, H. Field synergy analysis of the micro-cylindrical combustor with a step. Appl. Therm. Eng. 2016, 93, 3–89. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Liu, H.; Zhao, X.; Han, D.; Peng, Q.; Zuo, W.; Meng, T.; Qiu, R. Investigation on the combustion performance enhancement of the premixed methane/air in a two-step micro combustor. Appl. Therm. Eng. 2018, 141, 114–125. [Google Scholar] [CrossRef]
- Khandelwal, B.; Deshpande, A.A.; Kumar, S. Experimental studies on flame stabilization in a three tep rearward facing configuration based micro channel combustor. Appl. Therm. Eng. 2013, 58, 363–368. [Google Scholar] [CrossRef]
- Khandelwal, B.; Sahota, G.P.S.; Kumar, S. Investigations into the flame stability limits in a backward step micro scale combustor with premixed methane–air mixtures. J. Micromech. Microeng. 2010, 20, 095030. [Google Scholar] [CrossRef]
- Nair, S.; Lieuwen, T. Near-Blowoff Dynamics of a Bluff-Body Stabilized Flame. J. Propuls. Power 2007, 23, 421–427. [Google Scholar] [CrossRef]
- Wan, J.; Fan, A.; Maruta, K.; Yao, H.; Liu, W. Experimental and numerical investigation on combustion characteristics of premixed hydrogen/air flame in a micro-combustor with a bluff body. Int. J. Hydrogen Energy 2012, 37, 19190–19197. [Google Scholar] [CrossRef]
- Fan, A.; Wan, J.; Maruta, K.; Yao, H.; Liu, W. Interactions between heat transfer, flow field and flame stabilization in a micro-combustor with a bluff body. Int. J. Heat Mass Transf. 2013, 66, 72–79. [Google Scholar] [CrossRef]
- Bagheri, G.; Hosseini, S.E.; Wahid, M.A. Effects of bluff body shape on the flame stability in premixed micro-combustion of hydrogen–air mixture. Appl. Therm. Eng. 2014, 67, 266–272. [Google Scholar] [CrossRef]
- Fan, A.; Wan, J.; Liu, Y.; Pi, B.; Yao, H.; Maruta, K.; Liu, W. The effect of the blockage ratio on the blow-off limit of a hydrogen/air flame in a planar micro-combustor with a bluff body. Int. J. Hydrogen Energy 2013, 38, 11438–11445. [Google Scholar] [CrossRef]
- Yan, Y.; Yan, H.; Zhang, L.; Li, L.; Zhu, J.; Zhang, Z. Numerical investigation on combustion characteristics of methane/air in a micro-combustor with a regular triangular pyramid bluff body. Int. J. Hydrogen Energy 2018, 43, 7581–7590. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, J.; Yan, Y.; Guo, H.; Yang, Z. Numerical investigation on the combustion characteristics of methane/ air in a micro-combustor with a hollow hemispherical bluff body. Energy Convers. Manag. 2015, 94, 293–299. [Google Scholar] [CrossRef]
- Niu, J.; Ran, J.; Li, L.; Du, X.; Wang, R.; Ran, M. Effects of trapezoidal bluff bodies on blow out limit of methane/air combustion in a micro-channel. Appl. Therm. Eng. 2016, 95, 454–461. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, F.; Xu, Q.; Zhang, L.; Yang, Z.; Ran, J. Influence of controllable slit width and angle of controllable flow on hydrogen/air premixed combustion characteristics in micro combustor with both sides-slitted bluff body. Int. J. Hydrogen Energy 2019, 44, 20482–20492. [Google Scholar] [CrossRef]
- Yan, Y.; He, Z.; Xu, Q.; Zhang, L.; Li, L.; Yang, Z.; Ran, J. Numerical study on premixed hydrogen/air combustion characteristics in micro-combustor with slits on both sides of the bluff body. Int. J. Hydrogen Energy 2019, 44, 1998–2012. [Google Scholar] [CrossRef]
- Akhtar, S.; Khan, M.N.; Kurnia, J.C.; Shamim, T. Numerical Investigation of H2-air Premixed Combustion in a Curved Micro-Combustor for Thermo-photovoltaic (TPV) Applications. Energy Procedia 2015, 75, 3060–3065. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, S.; Khan, M.N.; Kurnia, J.C.; Shamim, T. Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications. Appl. Energy 2017, 192, 134–145. [Google Scholar] [CrossRef]
- Wan, J.; Zhao, H. Dynamics of premixed CH4 /air flames in a micro combustor with a plate flame holder and preheating channels. Energy 2017, 139, 366–379. [Google Scholar] [CrossRef]
- Wan, J.; Fan, A.; Yao, H.; Liu, W. Experimental investigation and numerical analysis on the blow-off limits of premixed CH4/air flames in a mesoscale bluff-body combustor. Energy 2016, 113, 193–203. [Google Scholar] [CrossRef]
- Jiang, D.; Yang, W.; Chua, K.J.; Ouyang, J. Thermal performance of micro-combustors with baffles for thermophotovoltaic system. Appl. Therm. Eng. 2013, 61, 670–677. [Google Scholar] [CrossRef]
- Jiang, D.; Yang, W.; Chua, K.J.; Ouyang, J.; Teng, J.H. Analysis of entropy generation distribution in micro-combustors with baffles. I Int. J. Hydrogen Energy 2014, 39, 8118–8125. [Google Scholar] [CrossRef]
- Tsai, B.J.; Wang, Y.L. A novel Swiss-Roll recuperator for the microturbine engine. Appl. Therm. Eng. 2009, 29, 216–223. [Google Scholar] [CrossRef]
- Zhong, B.; Wang, J.H. Experimental study on premixed CH4 /air mixture combustion in micro Swiss-roll combustors. Combust. Flame 2010, 157, 2222–2229. [Google Scholar] [CrossRef]
- Fan, A.; Zhang, H.; Wan, J. Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body. Energy 2017, 123, 252–259. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, Z.; Fan, A. Experimental investigation on non-premixed CH4 /air combustion in a novel miniature Swiss-roll combustor. Chem. Eng. Process. Process. Intensif. 2019, 139, 44–50. [Google Scholar] [CrossRef]
- Tang, A.; Pan, J.; Yang, W.; Xu, Y.; Hou, Z. Numerical study of premixed hydrogen/air combustion in a micro planar combustor with parallel separating plates. Int. J. Hydrogen Energy 2015, 40, 2396–2403. [Google Scholar] [CrossRef]
- Ansari, M.; Aman, E. Micro-combustor performance enhancement using a novel combined baffle-bluff configuration. Chem. Eng. Sci. 2018, 175, 243–256. [Google Scholar] [CrossRef]
- Amani, E.; Alizadeh, P.; Moghadam, R.S. Micro-combustor performance enhancement by hydrogen addition in a combined baffle-bluff configuration. Int. J. Hydrogen Energy 2018, 43, 8127–8138. [Google Scholar] [CrossRef]
- Zuo, W.; Jiaqiang, E.; Peng, Q.; Zhao, X.; Zhang, Z. Numerical investigations on thermal performance of a micro-cylindrical combustor with gradually reduced wall thickness. Appl. Therm. Eng. 2017, 113, 1011–1020. [Google Scholar] [CrossRef]
- Su, Y.; Cheng, Q.; Song, J.; Si, M. Numerical study on a multiple-channel micro combustor for a micro-thermophotovoltaic system. Energy Convers. Manag. 2016, 120, 197–205. [Google Scholar] [CrossRef]
- Yilmaz, H.; Cam, O.; Yilmaz, I. Effect of micro combustor geometry on combustion and emission behavior of premixed hydrogen/air flames. Energy 2017, 135, 585–597. [Google Scholar] [CrossRef]
- Zuo, W.; Jiaqiang, E.; Peng, Q.; Zhao, X.; Zhang, Z. Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system. Energy 2017, 122, 408–419. [Google Scholar] [CrossRef]
- Zuo, W.; Jiaqiang, E.; Lin, M. Numerical investigations on an improved counterflow double-channel micro combustor fueled with hydrogen for enhancing thermal performance. Energy Convers. Manag. 2018, 159, 163–174. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Zhao, X.; Qiu, L.; Wei, K.; Zhang, Z.; Deng, Y.; Han, D.; Liu, G. Experimental investigation on performance and economy characteristics of a diesel engine with variable nozzle turbocharger and its application in urban bus. Energy Convers. Manag. 2019, 193, 149–161. [Google Scholar] [CrossRef]
- Zuo, W.; E., J.; Han, D.; Jin, Y. Numerical investigations on thermal performance of double-layer four-channel micro combustors for micro-thermophotovoltaic system. Energy Convers. Manag. 2017, 150, 343–355. [Google Scholar] [CrossRef]
- Zuo, W.; E., J.; Lin, R.; Jin, Y.; Han, D. Numerical investigations on different configurations of a four-channel meso-scale planar combustor fueled by hydrogen/air mixture. Energy Convers. Manag. 2018, 160, 1–13. [Google Scholar] [CrossRef]
- Xu, K.; Liu, M.; Zhao, P. Stability of lean combustion in mini-scale porous media combustor with heat recuperation. Chem. Eng. Process. Process. Intensif. 2011, 50, 608–613. [Google Scholar] [CrossRef]
- Yang, W.M.; Chou, S.K.; Chua, K.J.; Li, J.; Zhao, X. Research on modular micro combustor-radiator with and without porous media. Chem. Eng. J. 2011, 168, 799–802. [Google Scholar] [CrossRef]
- Peng, Q.; Jiaqiang, E.; Chen, J.; Zuo, W.; Zhao, X.; Zhang, Z. Investigation on the effects of wall thickness and porous media on the thermal performance of a non-premixed hydrogen fueled cylindrical micro combustor. Energy Convers. Manag. 2018, 155, 276–286. [Google Scholar] [CrossRef]
- Peng, Q.; Yang, W.; Jiaqiang, E.; Xu, H.; Li, Z.; Yu, W.; Tu, Y.; Wu, Y. Experimental investigation on premixed hydrogen/air combustion in varied size combustors inserted with porous medium for thermophotovoltaic system applications. Energy Convers. Manag. 2019, 200, 112086. [Google Scholar] [CrossRef]
- Li, J.; Chou, S.; Li, Z.W.; Yang, W. Experimental investigation of porous media combustion in a planar micro-combustor. Fuel 2010, 89, 708–715. [Google Scholar] [CrossRef]
- Li, Z.; Chou, S.; Shu, C.; Yang, W. Effects of step height on wall temperature of a micro combustor. J. Micromech. Microeng. 2004, 15, 207–212. [Google Scholar] [CrossRef]
- Pan, J.; Wu, D.; Liu, Y.; Zhang, H.F.; Tang, A.K.; Xue, H. Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor. Appl. Energy 2015, 160, 802–807. [Google Scholar] [CrossRef]
- Peng, Q.; Yang, W.; Jiaqiang, E.; Li, S.; Li, Z.; Xu, H.; Wu, G. Effects of propane addition and burner scale on the combustion characteristics and working performance. Appl. Energy 2021, 285, 116484. [Google Scholar] [CrossRef]
- Yang, H.; Minaev, S.; Geynce, E.; Nakamura, H.; Maruta, K. Filtration combustion of methane in high-porosity micro-fibrous media. Combust. Sci. Technol. 2009, 181, 654–669. [Google Scholar] [CrossRef]
- Peng, Q.; Yang, W.; Jiaqiang, E.; Li, Z.; Xu, H.; Fu, G.; Li, S. Investigation on H2/air combustion with C3H8 addition in the combustor with part/full porous medium. Energy Convers. Manag. 2020, 228, 113652. [Google Scholar] [CrossRef]
- Jiang, D.; Yang, W.; Liu, Y.J.; Liu, H.L.; Teng, J.H. The development of a wideband and angle-insensitive metamaterial filter with extraordinary infrared transmission for micro-thermophotovoltaics. J. Mater. Chem. C 2015, 3, 3552–3558. [Google Scholar] [CrossRef]
- Wang, W.; Zuo, Z.; Liu, J. Numerical study of the premixed propane/air flame characteristics in a partially filled micro porous combustor. Energy 2019, 167, 902–911. [Google Scholar] [CrossRef]
- Wang, W.; Zuo, Z.; Liu, J. Experimental study and numerical analysis of the scaling effect on the flame stabilization of propane/air mixture in the micro-scale porous combustor. Energy 2019, 174, 509–518. [Google Scholar] [CrossRef]
- Wang, W.; Zuo, Z.; Liu, J. The effect of wall thermal conductivity on the thermal performance of a partially filled micro porous combustor. Energy Procedia 2019, 158, 5188–5194. [Google Scholar] [CrossRef]
- Meng, L.; Li, J.; Li, Q.; Shi, J. Flame Stabilization in a Planar Micro combustor Partially Filled with Anisotropic Porous Medium. React. Eng. Kinet. Catal. 2017, 64, 153–160. [Google Scholar] [CrossRef]
- Li, Q.; Li, J.; Shi, J.; Guo, L. Effects of heat transfer on flame stability limits in a planar micro-combustor partially filled with porous medium. Proc. Combust. Inst. 2019, 37, 5645–5654. [Google Scholar] [CrossRef]
- Peng, Q.; Yang, W.; Jiaqiang, E.; Xu, H.; Li, Z.; Tay, K.; Zeng, G.; Yu, W. Investigation on premixed H2/C3H8/air combustion in porous medium combustor for the micro thermophotovoltaic application. Appl. Energy 2020, 260, 114352. [Google Scholar] [CrossRef]
- Bani, S.; Pan, J.; Tang, A.; Lu, Q.; Zhang, Y. Numerical investigation of key parameters of the porous media combustion based Micro-Thermophotovoltaic system. Energy 2018, 157, 969–978. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Meng, T.; Chen, J.; Wu, W.; Zhao, X.; Zhang, B.; Peng, Q. Effect analysis on performance enhancement of a hydrogen/air non-premixed micro combustor with sudden expansion and contraction structure. Energy 2021, 230, 120727. [Google Scholar] [CrossRef]
- Kaisare, N.S.; Lee, J.H.; Fedorov, A.J. Hydrogen generation in a reverse-flow microreactor: 1. Model formulation and scaling. AICHE J. 2005, 51, 2254–2264. [Google Scholar] [CrossRef]
- Kaisare, N.S.; Stefanidis, G.D.; Vlachos, D.G.; Hessel, V.; Schouten, J.C.; Renken, A. Transport phenomena in microscale reacting flows. In Handbook of Micro Reactors: Fundamentals, Operations and Catalysts; Wiley: Hoboken, NJ, USA, 2009; Volume 1, pp. 283–302. [Google Scholar] [CrossRef]
- Norton, D.G.; Wetzel, E.D.; Vlachos, D.G. Fabrication of single-channel catalytic micro burners: Effect of confinement on the oxidation of hydrogen/air mixtures. Ind. Eng. Chem. Res. 2004, 43, 4833–4840. [Google Scholar] [CrossRef]
- Delsman, E.R.; Pierik, A.; Croon, M.H.J.M.D.; Kramer, G.J.; Schouten, J.C. Microchannel plate geometry optimization for even flow distribution at high flow rates. Chem. Eng. Res. Des. 2004, 82, 267–273. [Google Scholar] [CrossRef]
- Commenge, J.M.; Falk, L.; Corriou, J.P.; Matlosz, M. Optimal design for flow uniformity in microchannel reactors. AICHE J. 2002, 48, 345–358. [Google Scholar] [CrossRef]
- Amador, C.; Gavriilidis, A.; Angeli, P. Flow distribution in different microreactor scale-out geometries and the effect of manufacturing tolerances and channel blockage. Chem. Eng. J. 2004, 101, 379–390. [Google Scholar] [CrossRef]
- Deshmukh, S.R.; Vlachos, D.G. Novel micromixers driven by flow instabilities: Application to post-reactors. Chem. Eng. J. 2005, 51, 3193–3204. [Google Scholar] [CrossRef]
- Norton, D.G.; Wetzel, E.D.; Vlachos, D.G. Thermal management in catalytic microreactors. Ind. Eng. Chem. Res. 2006, 45, 76–84. [Google Scholar] [CrossRef]
- Federici, J.A.; Wetzel, E.D.; Geil, B.R.; Vlachos, D.G. Single channel and heat recirculation catalytic micro burners: An experimental and computational fluid dynamics study. Proc. Combust. Inst. 2009, 32, 3011–3018. [Google Scholar] [CrossRef]
- Boyarko, G.A.; Sung, C.J.; Schneider, S.J. Catalyzed combustion of hydrogen-oxygen in platinum tubes for micro-propulsion applications. Proc. Combust. Inst. 2005, 30, 2481–2488. [Google Scholar] [CrossRef]
- Mantzaras, J.; Bombach, R.; Schaeren, R. Hetero-/homogeneous combustion of hydrogen/air mixtures over platinum at pressures up to 10 bar. Proc. Combust. Inst. 2009, 32, 1937–1945. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Yang, W.; Liu, J.; Wang, Z.; Cen, K. Combustion of hydrogen-air in catalytic micro-combustors made of different material. Int. J. Hydrogen Energy 2009, 34, 3535–3545. [Google Scholar] [CrossRef]
- Reinke, M.; Mantzaras, J.; Schaeren, R.; Bombach, R.; Kreutner, W.; Inauen, A. Homogeneous ignition in high-pressure combustion of methane/air over platinum: Comparison of measurements and detailed numerical predictions. Proc. Combust. Inst. 2002, 29, 1021–1029. [Google Scholar] [CrossRef] [Green Version]
- Karim, A.M.; Federici, J.A.; Vlachos, D.G. Portable power production from methanol in an integrated thermoeletric/microreactor system. J. Power Sources 2008, 179, 113–120. [Google Scholar] [CrossRef]
- Ghermay, Y.; Mantzaras, J.; Bombach, R. Experimental and numerical investigation of hetero-/homogeneous combustion of CO/H2/O2/N2 mixtures over platinum at pressures up to 5 bar. Proc. Combust. Inst. 2011, 33, 1827–1835. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Yang, W.; Liu, M.; Cen, K. Effects of hydrogen addition on methane catalytic combustion in a microtube. Int. J. Hydrogen Energy 2007, 32, 1286–1293. [Google Scholar] [CrossRef]
- Li, Q.; Zuo, W.; Zhang, Y.; Li, J.; He, Z. Effects of rectangular rib on exergy efficiency of a hydrogen-fueled micro combustor. Int. J. Hydrogen Energy 2020, 45, 10155–10163. [Google Scholar] [CrossRef]
- Seshadri, V.; Kaisare, N.S. Ignition strategies for fuel mixtures in catalytic micro burners. Combust. Theory Model. 2010, 14, 23–40. [Google Scholar] [CrossRef]
- Ahn, J.; Eastwood, C.; Sitzki, L.; Ronney, P.D. Gas-phase and catalytic combustion in heat-recirculating burners. Proc. Combust. Inst. 2005, 30, 2463–2472. [Google Scholar] [CrossRef]
- Maruta, K.; Takeda, K.; Ahn, J.; Borer, K.; Sitzki, L.; Ronney, P.D. Extinction limits of catalytic combustion in microchannels. Proc. Combust. Inst. 2002, 29, 957–963. [Google Scholar] [CrossRef] [Green Version]
- Kaisare, N.S.; Deshmukh, S.R.; Vlachos, D.G. Stability and performance of catalytic microreactors: Simulations of propane catalytic combustion on Pt. Chem. Eng. Sci. 2008, 63, 1098–1116. [Google Scholar] [CrossRef]
- Zuo, W.; Li, J.; Zhang, Y.; Li, Q.; He, Z. Effects of multi-factors on comprehensive performance of a hydrogen- fueled micro-cylindrical combustor by combining grey relational analysis and analysis of variance. Energy 2020, 199, 117439. [Google Scholar] [CrossRef]
- Norton, D.G.; Vlacho, D.G. Hydrogen assisted self-ignition of propane/air mixtures in catalytic micro burners. Proc. Combust. Inst. 2005, 30, 2473–2480. [Google Scholar] [CrossRef]
- Yan, Y.; Tang, W.; Zhang, L.; Pan, W.; Yang, Z.; Chen, Y.; Lin, J. Numerical simulation of the effect of hydrogen addition fraction on catalytic micro-combustion characteristics of methane-air. Int. J. Hydrogen Energy 2014, 39, 1864–1873. [Google Scholar] [CrossRef]
- Zuo, W.; Zhang, Y.; Li, J.; Li, Q.; He, Z. A modified micro reactor fueled with hydrogen for reducing entropy generation. Int. J. Hydrogen Energy 2019, 44, 27984–27994. [Google Scholar] [CrossRef]
- Benedetto, A.D.; Sarli, V.D.; Russo, G. Effect of geometry on the thermal behavior of catalytic micro-combustors. Catal. Today 2010, 155, 116–122. [Google Scholar] [CrossRef]
- Baigmohammadi, M.; Tabejamaat, S.; Zarvandi, J. Numerical study of the behavior of methane-hydrogen/air pre-mixed flame in a micro reactor equipped with catalytic segmented bluff body. Energy 2015, 85, 117–144. [Google Scholar] [CrossRef]
- Li, Y.; Chen, G.; Wu, F.; Cheng, T.; Chao, Y. Effects of catalyst segmentation with cavities on combustion enhancement of blended fuels in a micro channel. Combust. Flame 2012, 159, 1644–1651. [Google Scholar] [CrossRef]
- Li, Y.; Chen, G.; Wu, F.; Cheng, T.; Chao, Y. Combustion characteristics in a small-scale reactor with catalyst segmentation and cavities. Proc. Combust. Inst. 2013, 34, 2253–2259. [Google Scholar] [CrossRef]
- Ran, J.; Li, L.; Du, X.; Wang, R.; Pan, W.; Tang, W. Numerical investigations on characteristics of methane catalytic combustion in micro-channels with a concave or convex wall cavity. Energy Convers. Manag. 2015, 97, 188–195. [Google Scholar] [CrossRef]
- Zhang, B.; Jiaqiang, E.; Gong, J.; Yuan, W.; Zuo, W.; Li, Y.; Fu, J. Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process. Appl. Energy 2016, 181, 14–28. [Google Scholar] [CrossRef]
- Chen, J.; Gao, X.; Yan, L.; Xu, D. Effect of wall thermal conductivity on the stability of catalytic heat-recirculating micro-combustors. Appl. Therm. Eng. 2018, 128, 849–860. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, H.; Pan, W.; Zhang, L.; Li, L.; Yang, Z.; Lin, C. Numerical study of effect of wall parameters on catalytic combustion characteristics of CH4/air in a heat recirculation micro-combustor. Energy Convers. Manag. 2016, 118, 474–484. [Google Scholar] [CrossRef]
- Yan, Y.; Feng, S.; Huang, Z.; Zhang, L.; Pan, W.; Li, L.; Yang, Z. Thermal management and catalytic combustion stability characteristics of premixed methane/air in heat recirculation meso-combustors. Int. J. Energy Res. 2017, 42, 999–1012. [Google Scholar] [CrossRef]
- Yan, Y.; Wu, G.; Huang, G.; Zhang, L.; Li, L.; Yang, Z. Numerical comparison study of methane catalytic combustion characteristic between newly proposed opposed counter-flow micro-combustor and the conventional ones. Energy 2019, 170, 403–410. [Google Scholar] [CrossRef]
- Chen, G.; Chen, C.; Wu, C.; Chao, Y. Effects of catalytic walls on hydrogen/air combustion inside a micro-tube. Appl. Catal. A Gen. 2007, 332, 89–97. [Google Scholar] [CrossRef]
- Chen, J.; Yan, L.; Song, W. Numerical simulation of micro-scale catalytic combustion characteristics with detailed chemical kinetic reaction mechanisms of hydrogen/air. React. Kinet. Mech. Catal. 2014, 113, 19–37. [Google Scholar] [CrossRef]
- Chen, J.; Yan, L.; Song, W. Hydrogen-assisted catalytic ignition characteristics of propane-air with a chemical kinetic model in a Pt/γ-Al2O3 micro-combustor in different feeding modes. R. Soc. Chem. 2015, 5, 14720–14734. [Google Scholar] [CrossRef]
- Chen, J.; Song, W.; Gao, X.; Xu, D. Hetero-/homogeneous combustion and flame stability of fuel-lean propane-air mixtures over platinum in catalytic micro-combustors. Appl. Therm. Eng. 2016, 100, 932–943. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Tian, J.; Xie, G.; Tan, D.; Qin, B.; Huang, Y.; Cui, S. Effects of different diesel-ethanol dual fuel ratio on performance and emission characteristics of diesel engine. Processes 2021, 9, 1135. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Meng, L.; Li, J.; Guo, Z. CFD study on stability limits of hydrogen/air premixed flames in planar micro-combustors with catalytic walls. Appl. Therm. Eng. 2017, 121, 325–335. [Google Scholar] [CrossRef]
- Zuo, W.; Li, J.; Zhang, Y.; Li, Q.; Jia, S.; He, Z. Multi-factor impact mechanism on combustion efficiency of a hydrogen-fueled micro-cylindrical combustor. Int. J. Hydrogen Energy 2020, 45, 2319–2330. [Google Scholar] [CrossRef]
- Shirneshan, A.; Bagherzadeh, S.; Najafi, G.; Mamat, R.; Mazlan, M. Optimization and investigation the effects of using biodieselethanol blends on the performance and emission characteristics of a diesel engine by genetic algorithm. Fuel 2021, 289, 119753. [Google Scholar] [CrossRef]
- Zuo, H.; Tan, J.; Wei, K.; Huang, Z.; Zhong, D.; Xie, F. Effects of different poses and wind speeds on wind-induced vibration characteristics of a dish solar concentrator system. Renew. Energy 2021, 168, 1308–1326. [Google Scholar] [CrossRef]
- Zuo, H.; Liu, G.; Jiaqiang, E.; Zuo, W.; Wei, K.; Hu, W.; Tan, J.; Zhong, D. Catastrophic analysis on the stability of a large dish solar thermal power generation system with wind-induced vibration. Sol. Energy 2019, 183, 40–49. [Google Scholar] [CrossRef]
- Hu, L.; Hu, X.; Che, Y.; Feng, F.; Lin, X.; Zhang, Z. Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering. Appl. Energy 2020, 262, 114569. [Google Scholar] [CrossRef]
- Zhang, F.; Liao, G.; Jiaqiang, E.; Chen, J.; Leng, E. Comparative study on the thermodynamic and economic performance of novel absorption power cycles driven by the waste heat from a supercritical CO2 cycle. Energy Convers. Manag. 2021, 228, 113671. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Zhang, B.; Zeng, Y.; Wen, M.; Huang, Z.; Wei, K.; Chen, J.; Zhu, H.; Deng, Y. Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge. Energy 2021, 238, 121822. [Google Scholar] [CrossRef]
- Feng, C.; Deng, Y.; Chen, L.; Han, W.; Jiaqiang, E.; Wei, K.; Han, D.; Zhang, B. Hydrocarbon emission control of a hydrocarbon adsorber and converter under cold start of the gasoline engine. Energy 2021, 239, 122138. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Zhao, M.; Zuo, Q.; Zhang, B.; Zhang, Z.; Peng, Q.; Han, D.; Zhao, X.; Deng, Y. Effects analysis on diesel soot continuous regeneration performance of a rotary microwave-assisted regeneration diesel particulate filter. Fuel 2020, 260, 116353. [Google Scholar] [CrossRef]
- Zhang, B.; Zuo, H.; Huang, Z.; Tan, J.; Zuo, Q. Endpoint forecast of different diesel-biodiesel soot filtration process in diesel particulate filters considering ash deposition. Fuel 2020, 272, 117678. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Abubakar, S.; Li, Y.; Liu, Z. A realistic skeletal mechanism for the oxidation of biodiesel surrogate composed of long carbon chain and polyunsaturated compounds. Fuel 2021, 289, 119934. [Google Scholar] [CrossRef]
- Han, D.; Jiaqiang, E.; Deng, Y.; Zhao, X.; Feng, C.; Chen, J.; Leng, E.; Liao, G.; Zhang, F. A review of studies using hydrocarbon reduction measures for reducing hydrocarbon emissions from cold start of gasoline engine. Renew. Sustain. Energy Rev. 2021, 135, 110079. [Google Scholar] [CrossRef]
- Zhong, C.; Tan, J.; Zuo, H.; Wu, X.; Wang, S.; Liu, J. Synergy effects analysis on CDPF regeneration performance enhancement and NOx concentration reduction of NH3–SCR over Cu–ZSM–5. Energy 2021, 230, 120814. [Google Scholar] [CrossRef]
- Li, W.; Ji, J.; Huang, L.; Guo, Z. Global dynamics of a controlled discontinuous diffusive SIR epidemic system. Appl. Math. Lett. 2021, 121, 107420. [Google Scholar] [CrossRef]
- Zuo, H.; Zhang, B.; Huang, Z.; Wei, K.; Tan, J. Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation. Energy 2021, 238, 121854. [Google Scholar] [CrossRef]
- Hu, L.; Bao, X.; Lin, M.; Yu, C.; Wang, F. Research on risky driving behavior evaluation model based on CIDAS real data. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 2176–2187. [Google Scholar] [CrossRef]
- Hu, L.; Hu, X.; Kuang, A.; Lin, M.; Wang, J. Casualty risk of e-bike rider struck by passenger vehicle using China In-depth accident data. Traffic Inj. Prev. 2020, 21, 283–287. [Google Scholar] [CrossRef]
- Yi, F.; Jiaqiang, E.; Zhang, B.; Zuo, H.; Wei, K.; Chen, J.; Zhu, H.; Zhu, H.; Deng, Y. Effects of coupling phase change material and liquid cooling on heat dissipation characteristics of Lithium-ion battery thermal management system. Renew. Energy 2021, 181, 472–489. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Zhang, Z.; Chen, J.; Pham, M.; Zhao, X.; Peng, Q.; Zhang, B.; Yin, Z. Performance and emission evaluation of a marine diesel engine fueled by water biodiesel-diesel emulsion blends with a fuel additive of a cerium oxide nanoparticle. Energy Convers. Manag. 2018, 169, 194–205. [Google Scholar] [CrossRef]
Type | Energy Density |
---|---|
Diesel combustion | 45.3 MJ/kg |
Ethanol combustion | 30.5 MJ/kg |
Heating oil combustion | 42.5 MJ/kg |
Gasoline combustion | 45.8 MJ/kg |
Lithium sulfur batteries | 0.792 MJ/kg |
Lithium ion batteries | 0.468 MJ/kg |
Lead acid batteries | 0.0792 MJ/kg |
Methanol combustion | 22.7 MJ/kg |
Nickel cadmium (NiCad) batteries | 0.158 MJ/kg |
n-Octane combustion | 48.2 MJ/kg |
n-Butane combustion | 49.6 MJ/kg |
Materials | Density (kg/m3) | Melting Point T (K) | Thermal Conductivity (W/m K−1) | Specific Heat Cp (J/kg K−1) |
---|---|---|---|---|
Corundum | 3940 | 2273 | 32 | 37 |
Quartz glass | 2650 | 2023 | 1.05 | 750 |
Copper | 8978 | 1356 | 387 | 381 |
Ferrochrome | 7200 | 1773 | 16 | 615 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, D.; Ran, G.; Xie, G.; Wang, J.; Luo, J.; Huang, Y.; Cui, S.; Zhang, Z. Effect of Different Technologies on Performance Enhancement of the Micro-Combustor for the Micro Thermophotovoltaic Application: A Review. Energies 2021, 14, 6577. https://doi.org/10.3390/en14206577
Tan D, Ran G, Xie G, Wang J, Luo J, Huang Y, Cui S, Zhang Z. Effect of Different Technologies on Performance Enhancement of the Micro-Combustor for the Micro Thermophotovoltaic Application: A Review. Energies. 2021; 14(20):6577. https://doi.org/10.3390/en14206577
Chicago/Turabian StyleTan, Dongli, Guicheng Ran, Guangling Xie, Jie Wang, Jianbin Luo, Yuanxing Huang, Shuwan Cui, and Zhiqing Zhang. 2021. "Effect of Different Technologies on Performance Enhancement of the Micro-Combustor for the Micro Thermophotovoltaic Application: A Review" Energies 14, no. 20: 6577. https://doi.org/10.3390/en14206577
APA StyleTan, D., Ran, G., Xie, G., Wang, J., Luo, J., Huang, Y., Cui, S., & Zhang, Z. (2021). Effect of Different Technologies on Performance Enhancement of the Micro-Combustor for the Micro Thermophotovoltaic Application: A Review. Energies, 14(20), 6577. https://doi.org/10.3390/en14206577