Reliability-Oriented Design of a Solar-PV Deployments
Abstract
:1. Introduction
2. Description of Study Area
3. Photovoltaic Installation Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Włodarczyk, B.; Firoiu, D.; Ionescu, G.; Ghiocel, F.; Szturo, M.; Markowski, L. Assessing the Sustainable Development and Renewable Energy Sources Relationship in EU Countries. Energies 2021, 14, 2323. [Google Scholar] [CrossRef]
- Marks-Bielska, R.; Bielski, S.; Pik, K.; Kurowska, K. The Importance of Renewable Energy Sources in Poland’s Energy Mix. Energies 2020, 13, 4624. [Google Scholar] [CrossRef]
- Damm, A.; Köberl, J.; Prettenthaler, F.; Rogler, N.; Töglhofer, C. Impacts of +2 °C global warming on electricity demand in Europe. Clim. Serv. 2017, 7, 12–30. [Google Scholar] [CrossRef] [Green Version]
- Ec.Europa.Eu/Eurostat. 2020 Climate & Energy Package. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2020-climate-energy-package_en (accessed on 20 May 2021).
- Ec.Europa.Eu/Eurostat. Climate Action. Available online: https://Ec.Europa.Eu/Clima/Policies/Strategies/2020_en (accessed on 26 May 2021).
- Nowak, K.; Rabczak, S. Co-Combustion of Biomass with Coal in Grate Water Boilers at Low Load Boiler Operation. Energies 2021, 14, 2520. [Google Scholar] [CrossRef]
- Singh, K.; Singh, S.; Kandpal, D.C.; Kumar, R. Experimental performance study of photovoltaic solar panel with and without water circulation. Mater. Today Proc. 2021, 46, 6822–6827. [Google Scholar] [CrossRef]
- Tian, L.; Huang, Y.; Liu, S.; Sun, S.; Deng, J.; Zhao, H. Application of photovoltaic power generation in rail transit power supply system under the background of energy low carbon transformation. Alex. Eng. J. 2021, 60, 5167–5174. [Google Scholar] [CrossRef]
- Fernández-González, R.; Arce, E.; Garza-Gil, D. How political decisions affect the economy of a sector: The example of photovoltaic energy in Spain. Energy Rep. 2021, 7, 2940–2949. [Google Scholar] [CrossRef]
- Liang, S.; Zheng, H.; Ma, X.; Liu, F.; Wang, G.; Zhao, Z. Study on a passive concentrating photovoltaic-membrane distillation integrated system. Energy Convers. Manag. 2021, 242, 114332. [Google Scholar] [CrossRef]
- Klein, M.; Deissenroth, M. When do households invest in solar photovoltaics? An application of prospect theory. Energy Policy 2017, 109, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; Kottam, V.K.R. Solar photovoltaic module production: Environmental footprint, management horizons and investor goodwill. Renew. Sustain. Energy Rev. 2018, 81, 874–882. [Google Scholar] [CrossRef]
- Awerbuch, S. Investing in photovoltaics: Risk, accounting and the value of new technology. Energy Policy 2000, 28, 1023–1035. [Google Scholar] [CrossRef]
- Buragohain, S.; Mohanty, K.; Mahanta, P. Hybridization of solar photovoltaic and biogas system: Experimental, economic and environmental analysis. Sustain. Energy Technol. Assess. 2021, 45, 101050. [Google Scholar] [CrossRef]
- Sharma, D.; Mehra, R.; Raj, B. Comparative analysis of photovoltaic technologies for high efficiency solar cell design. Superlattices Microstruct. 2021, 153, 106861. [Google Scholar] [CrossRef]
- Kirthika, B.; Sekar, S.; Saravanan, S.; Shivasankaran, N.; Balan, A.; Kalirajan, M. Performance analysis of synthesized ZnO nanoparticles coated photovoltaic cell. Mater. Today Proc. 2020, 21, 511–513. [Google Scholar] [CrossRef]
- Nayak, P.K.; Mahesh, S.; Snaith, H.J.; Cahen, D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019, 4, 269–285. [Google Scholar] [CrossRef]
- Sarasa-Maestro, C.J.; Dufo-López, R.; Bernal-Agustín, J.L. Photovoltaic remuneration policies in the European Union. Energy Policy 2013, 55, 317–328. [Google Scholar] [CrossRef]
- García-Álvarez, M.T.; Cabeza-García, L.; Soares, I. Assessment of energy policies to promote photovoltaic generation in the European Union. Energy 2018, 151, 864–874. [Google Scholar] [CrossRef]
- Arantegui, R.L.; Jäger-Waldau, A. Photovoltaics and wind status in the European Union after the Paris Agreement. Renew. Sustain. Energy Rev. 2018, 81, 2460–2471. [Google Scholar] [CrossRef]
- Bódis, K.; Kougias, I.; Jäger-Waldau, A.; Taylor, N.; Szabó, S. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114. [Google Scholar] [CrossRef]
- Paska, J.; Piotr, M. Modelowanie Niezawodności Elektrowni Fotowoltaicznych. Rynek Energii 2014, 111, 81–86. [Google Scholar]
- Anand, B.; Shankar, R.; Murugavelh, S.; Rivera, W.; Prasad, K.M.; Nagarajan, R. A review on solar photovoltaic thermal integrated desalination technologies. Renew. Sustain. Energy Rev. 2021, 141, 110787. [Google Scholar] [CrossRef]
- Chai, Q.; Zhang, C.; Dong, Z.Y.; Xu, Y. Operational reliability assessment of photovoltaic inverters considering voltage/VAR control function. Electr. Power Syst. Res. 2020, 190, 106706. [Google Scholar] [CrossRef]
- Raghuwanshi, S.S.; Arya, R. Reliability evaluation of stand-alone hybrid photovoltaic energy system for rural healthcare centre. Sustain. Energy Technol. Assess. 2020, 37, 100624. [Google Scholar] [CrossRef]
- Duarte, F.; Torres, J.; Baptista, A.; Lameirinhas, R.M. Optical Nanoantennas for Photovoltaic Applications. Nanomaterials 2021, 11, 422. [Google Scholar] [CrossRef] [PubMed]
- Van De Sande, W.; Ravyts, S.; Sangwongwanich, A.; Manganiello, P.; Yang, Y.; Blaabjerg, F.; Driesen, J.; Daenen, M. A mission profile-based reliability analysis framework for photovoltaic DC-DC converters. Microelectron. Reliab. 2019, 100-101, 113383. [Google Scholar] [CrossRef] [Green Version]
- Jacob, A.S.; Banerjee, R.; Ghosh, P.C. Trade-off between end of life of battery and reliability in a photovoltaic system. J. Energy Storage 2020, 30, 101565. [Google Scholar] [CrossRef]
- Satpathy, P.R.; Sharma, R. Reliability and losses investigation of photovoltaic power generators during partial shading. Energy Convers. Manag. 2020, 223, 113480. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, J.; Wang, J.; Huang, Z.; Li, G.; Zhou, M. Evaluating the reliability of distributed photovoltaic energy system and storage against household blackout. Glob. Energy Interconnect. 2021, 4, 18–27. [Google Scholar] [CrossRef]
- Kut, P.; Nowak, K. Design of Photovoltaic Systems using Computer Software. J. Ecol. Eng. 2019, 20, 72–78. [Google Scholar] [CrossRef]
- Zuniga-Reyes, M.-A.; Robles-Ocampo, J.-B.; Sevilla-Camacho, P.-Y.; Rodriguez-Resendiz, J.; Lastres-Danguillecourt, O.; Conde-Diaz, J.-E. Photovoltaic Failure Detection Based on String-Inverter Voltage and Current Signals. IEEE Access 2021, 9, 39939–39954. [Google Scholar] [CrossRef]
- Luo, W.; Clement, C.E.; Khoo, Y.S.; Wang, Y.; Khaing, A.M.; Reindl, T.; Kumar, A.; Pravettoni, M. Photovoltaic module failures after 10 years of operation in the tropics. Renew. Energy 2021, 177, 327–335. [Google Scholar] [CrossRef]
- Aerosol and Radiation Observatory. Available online: https://Www.Igf.Fuw.Edu.Pl/~kmark/Stacja/Stacja_info.Php (accessed on 15 May 2021).
- Tatarczak, J.; Sokołowska, M.; Olchowik, J.M. Analiza napromieniowania słonecznego Polski na podstawie danych satelitarnych NASA. J. Civ. Eng. Environ. Arch. 2015, 32, 505–518. [Google Scholar] [CrossRef]
Type of Losses | Loss Value (%) |
---|---|
Heat losses | 3.00 |
Losses from mismatch | 2.00 |
Resistance Ohmic losses | 4.00 |
DC/AC conversion losses | 2.70 |
Other losses | 2.00 |
Total losses | 13.70 |
Month | Actual Energy Production | BlueSol Software | Calculations Using Formula (1) for Insolation from Measurements | Calculations Using Formula (1) for Insolation from NASA Database |
---|---|---|---|---|
(-) | (kWh) | (kWh) | (kWh) | (kWh) |
Jan | 163.2 | 148.3 | 130.2 | 126.1 |
Feb | 197.4 | 219.3 | 163.4 | 196.6 |
Mar | 446.1 | 361.8 | 388.6 | 349.9 |
Apr | 689.6 | 446.1 | 680.2 | 455.9 |
May | 570.5 | 578.7 | 603.9 | 610.8 |
Jun | 534.3 | 545.6 | 570.0 | 585.1 |
Jul | 628.7 | 567.5 | 711.3 | 604.6 |
Aug | 639.1 | 530.8 | 694.2 | 549.0 |
Sep | 470.4 | 352.7 | 434.5 | 349.4 |
Oct | 240.1 | 242.9 | 201.7 | 225.0 |
Nov | 148.3 | 136.2 | 120.8 | 120.8 |
Dec | 82.8 | 114.9 | 79.7 | 96.4 |
Total | 4810.5 | 4244.8 | 4778.6 | 4269.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kut, P.; Pietrucha-Urbanik, K.; Tchórzewska-Cieślak, B. Reliability-Oriented Design of a Solar-PV Deployments. Energies 2021, 14, 6535. https://doi.org/10.3390/en14206535
Kut P, Pietrucha-Urbanik K, Tchórzewska-Cieślak B. Reliability-Oriented Design of a Solar-PV Deployments. Energies. 2021; 14(20):6535. https://doi.org/10.3390/en14206535
Chicago/Turabian StyleKut, Paweł, Katarzyna Pietrucha-Urbanik, and Barbara Tchórzewska-Cieślak. 2021. "Reliability-Oriented Design of a Solar-PV Deployments" Energies 14, no. 20: 6535. https://doi.org/10.3390/en14206535
APA StyleKut, P., Pietrucha-Urbanik, K., & Tchórzewska-Cieślak, B. (2021). Reliability-Oriented Design of a Solar-PV Deployments. Energies, 14(20), 6535. https://doi.org/10.3390/en14206535