A Multi-Factorial Review of Repowering Wind Generation Strategies
Abstract
:1. Introduction
2. Methods
- Evolution of publications: a first analysis of the annual evolution of publications was carried out to identify the period in which these studies are the most relevant and interesting;
- Classification by technology: given the technological maturity of both onshore and offshore wind, each of them was accounted for separately;
- Geographical classification: a study of the case studies was carried out by country to identify the geographical areas with the greatest impact in the publications and their possible association with other indicators of the sector;
- Multi-Category analysis: all the factors that involve the repowering process of the wind power plants of the selected studies were analyzed. Supported by the categories of factors involved in the optimal selection of wind sites [34], five general categories are proposed: technical, economic, environmental, social, and political. Subsequently, the most relevant factors for each category were identified. Table 1 shows the main factors included in each category. In some cases, it can be difficult to determine if a factor refers to one category or another (i.e., ’noise’ and ’visual impact’ could be considered as ’Environmental’ or ’Social’). To overcome such adversity, the authors found out another review where it is stated that social acceptance is focused on the aerodynamic noise and the distance from the turbine [35]. Hence, both ’noise’ and ’visual impact’ are considered within the ’Social’ category.
3. Repowering Strategies for Onshore Wind Power Plants
3.1. Multi-Category Analysis
- Doubling scenario: wind turbines with rated capacity under 2.1 MW were repowered with 3 MW turbines, and those with a rated power over 2.1 MW were replaced with 5.2 MW turbines;
- Quadrupling scenario: wind turbines with rated capacity under 2.1 MW were repowered with 8.2 MW turbines, and those with a rated power over 2.1 MW were replaced with 5.2 MW turbines.
3.2. Single-Category Analysis
- New wind turbines were twice as high as the previous ones;
- The rotor diameter of new wind turbines was three times larger than the previous blades, consequently having a swept area nine times larger;
- Nominal power of new wind turbines was around six times the power of the initial turbines.
4. Repowering Strategies for Offshore Wind Power Plants
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEP | Annual Energy Production |
ALCoG | Annual Levelized Cost of Generation |
CAPEX | Capital Expenditure |
CF | Capacity Factor |
CoE | Cost of Energy |
ESS | Energy Storage System |
FIT | Feed-In Tariff |
GIS | Geographical Information System |
IRR | Internal Rate of Return |
LCoE | Levelized Cost of Energy |
NPV | Net Present Value |
NPRV | Net Present Repowering Value |
NREL | National Renewable Energy Laboratory |
PBP | Pay-Back Period |
PCC | Point of Common-Coupling |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
OPEX | Operational Expenditure |
PVC | Present Value of Costs |
RES | Renewable Energy Sources |
ROC | Renewable Obligation Certificate |
SP min | Minimum Spot Price |
USA | United States |
References
- Tafarte, P.; Das, S.; Eichhorn, M.; Thrän, D. Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources. Energy 2014, 72, 80–92. [Google Scholar] [CrossRef]
- Fernández-Guillamón, A.; Villena-Lapaz, J.; Vigueras-Rodríguez, A.; García-Sánchez, T.; Molina-García, Á. An adaptive frequency strategy for variable speed wind turbines: Application To high wind integration into power systems. Energies 2018, 11, 1436. [Google Scholar] [CrossRef] [Green Version]
- Zhong, M.; Bazilian, M.D. Contours of the energy transition: Investment by international oil and gas companies in renewable energy. Electr. J. 2018, 31, 82–91. [Google Scholar] [CrossRef]
- Alola, A.A.; Yalçiner, K.; Alola, U.V.; Akadiri, S.S. The role of renewable energy, immigration and real income in environmental sustainability target. Evidence from Europe largest states. Sci. Total Environ. 2019, 674, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Sueyoshi, T. Climate change mitigation targets set by global firms: Overview and implications for renewable energy. Renew. Sustain. Energy Rev. 2018, 94, 386–398. [Google Scholar] [CrossRef]
- Ram, M.; Bogdanov, D.; Aghahosseini, A.; Oyewo, S.; Gulagi, A.; Child, M.; Fell, H.J.; Breyer, C. Global Energy System Based on 100% Renewable Energy–Power Sector; Lappeenranta University of Technology and Energy Watch Group: Lappeenranta, Finland, 2017. [Google Scholar]
- Renewable Energy Prospects for the European Union; Technical Report; International Renewable Energy Agency (IRENA), European Commission (EC): Abu Dhabi, United Arab Emirates, 2018; ISBN 978-92-9260-007-5. Available online: http://www.irena.org/publications (accessed on 5 July 2021).
- Ten-Year Network Development Plans (TYNDPs) 2020—Scenario Report. Technical Report. ENTSO-E and ENTSOG, 2020. Available online: https://2020.entsos-tyndp-scenarios.eu/ (accessed on 5 July 2021).
- Saint Akadiri, S.; Alola, A.A.; Akadiri, A.C.; Alola, U.V. Renewable energy consumption in EU-28 countries: Policy toward pollution mitigation and economic sustainability. Energy Policy 2019, 132, 803–810. [Google Scholar] [CrossRef]
- Ediger, V.S. An integrated review and analysis of multi-energy transition from fossil fuels to renewables. Energy Procedia 2019, 156, 2–6. [Google Scholar] [CrossRef]
- Eroglu, H. Effects of COVID-19 outbreak on environment and renewable energy sector. Environ. Dev. Sustain. 2021, 23, 4782–4790. [Google Scholar] [CrossRef]
- Barbier, E.B.; Burgess, J.C. Sustainability and development after COVID-19. World Dev. 2020, 135, 105082. [Google Scholar] [CrossRef]
- Madurai Elavarasan, R.; Pugazhendhi, R.; Jamal, T.; Dyduch, J.; Arif, M.; Manoj Kumar, N.; Shafiullah, G.; Chopra, S.S.; Nadarajah, M. Envisioning the UN Sustainable Development Goals (SDGs) through the lens of energy sustainability (SDG 7) in the post-COVID-19 world. Appl. Energy 2021, 292, 116665. [Google Scholar] [CrossRef]
- Asantewaa-Owusu, P.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Fleta-Asín, J.; Muñoz, F. Renewable energy public–private partnerships in developing countries: Determinants of private investment. Sustain. Dev. 2021, 29, 653–670. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Fernández-Guillamón, A.; Das, K.; Cutululis, N.A.; Molina-García, Á. Offshore wind power integration into future power systems: Overview and trends. J. Mar. Sci. Eng. 2019, 7, 399. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Benavente, I.; Hansen, A.D.; Gómez-Lázaro, E.; García-Sánchez, T.; Fernández-Guillamón, A.; Molina-García, Á. Impact of combined demand-response and wind power plant participation in frequency control for multi-area power systems. Energies 2019, 12, 1687. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Khan, Z.A.; Alvarez-Alvarado, M.S.; Zhang, Y.; Huang, Z.; Imran, M. A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources. Sustainability 2020, 12, 5078. [Google Scholar] [CrossRef]
- Solman, H.; Smits, M.; van Vliet, B.; Bush, S. Co-production in the wind energy sector: A systematic literature review of public engagement beyond invited stakeholder participation. Energy Res. Soc. Sci. 2021, 72, 101876. [Google Scholar] [CrossRef]
- Renewable Energy Statistics; Technical Report; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2021; ISBN 978-92-9260-356-4. Available online: https://www.irena.org/statistics/ (accessed on 5 July 2021).
- Njiri, J.G.; Beganovic, N.; Do, M.H.; Söffker, D. Consideration of lifetime and fatigue load in wind turbine control. Renew. Energy 2019, 131, 818–828. [Google Scholar] [CrossRef]
- Stetter, C.; Heumann, M.; Westbomke, M.; Stonis, M.; Breitner, M.H. A Real Options Approach to Determine the Optimal Choice Between Lifetime Extension and Repowering of Wind Turbines. In Operations Research Proceedings 2019; Neufeld, J.S., Buscher, U., Lasch, R., Möst, D., Schönberger, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 291–297. [Google Scholar]
- Haces-Fernandez, F. GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities. Energies 2020, 13, 6015. [Google Scholar] [CrossRef]
- Hache, E.; Palle, A. Renewable energy source integration into power networks, research trends and policy implications: A bibliometric and research actors survey analysis. Energy Policy 2019, 124, 23–35. [Google Scholar] [CrossRef]
- Serrano González, J.; Burgos Payán, M.; Santos, J.M.R.; González-Longatt, F. A review and recent developments in the optimal wind-turbine micro-siting problem. Renew. Sustain. Energy Rev. 2014, 30, 133–144. [Google Scholar] [CrossRef]
- Pereira, S.; Ferreira, P.; Vaz, A. Optimization modeling to support renewables integration in power systems. Renew. Sustain. Energy Rev. 2016, 55, 316–325. [Google Scholar] [CrossRef]
- Sakellariou, N. Current and potential decommissioning scenarios for end–of–life composite wind blades. Energy Syst. 2018, 9, 981–1023. [Google Scholar] [CrossRef]
- Mishnaevsky, L. Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions. Materials 2021, 14, 1124. [Google Scholar] [CrossRef]
- Pakenham, B.; Ermakova, A.; Mehmanparast, A. A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments. Energies 2021, 14, 1936. [Google Scholar] [CrossRef]
- Topham, E.; González, E.; McMillan, D.; João, E. Challenges of decommissioning offshore wind farms: Overview of the European experience. J. Phys. Conf. Ser. 2019, 1222, 012035. [Google Scholar] [CrossRef]
- Piel, J.; Stetter, C.; Heumann, M.; Westbomke, M.; Breitner, M. Lifetime Extension, Repowering or Decommissioning? Decision Support for Operators of Ageing Wind Turbines. J. Phys. Conf. Ser. 2019, 1222, 012033. [Google Scholar] [CrossRef]
- Sawant, M.; Thakare, S.; Rao, A.P.; Feijóo-Lorenzo, A.E.; Bokde, N.D. A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics. Energies 2021, 14, 2041. [Google Scholar] [CrossRef]
- Gil-García, I.C.; García-Cascales, M.S.; Fernández-Guillamón, A.; Molina-García, A. Categorization and analysis of relevant factors for optimal locations in onshore and offshore wind power plants: A taxonomic review. J. Mar. Sci. Eng. 2019, 7, 391. [Google Scholar] [CrossRef] [Green Version]
- McKenna, R.; vd Leye, P.O.; Fichtner, W. Key challenges and prospects for large wind turbines. Renew. Sustain. Energy Rev. 2016, 53, 1212–1221. [Google Scholar] [CrossRef]
- Klunne, W.E.; Beurskens, H.J.M.; Westra, C. Wind Repowering in the Netherlands. Energy Research Centre of the Netherlands ECN, 2001. Available online: https://publicaties.ecn.nl/ (accessed on 5 July 2021).
- Möller, B. Changing wind-power landscapes: Regional assessment of visual impact on land use and population in Northern Jutland, Denmark. Appl. Energy 2006, 83, 477–494. [Google Scholar] [CrossRef]
- Meyerhoff, J.; Ohl, C.; Hartje, V. Landscape externalities from onshore wind power. Energy Policy 2010, 38, 82–92. [Google Scholar] [CrossRef]
- Ohl, C.; Eichhorn, M. The mismatch between regional spatial planning for wind power development in Germany and national eligibility criteria for feed-in tariffs—A case study in West Saxony. Land Use Policy 2010, 27, 243–254. [Google Scholar] [CrossRef]
- Sperling, K.; Hvelplund, F.; Mathiesen, B.V. Evaluation of wind power planning in Denmark–Towards an integrated perspective. Energy 2010, 35, 5443–5454. [Google Scholar] [CrossRef]
- Castro, L.; Filgueira, A.; Seijo, M.; Muñoz, E.; Piegiari, L. Is it economically possible repowering Wind Farms. A general analysis in Spain. RE PQJ 2011, 11, 11. [Google Scholar] [CrossRef]
- Del Río, P.; Calvo Silvosa, A.; Iglesias Gómez, G. Policies and design elements for the repowering of wind farms: A qualitative analysis of different options. Energy Policy 2011, 39, 1897–1908. [Google Scholar] [CrossRef]
- Himpler, S.; Madlener, R. Repowering of Wind Turbines: Economics and Optimal Timing. FCN Working Paper No. 19/2011. 2012. Available online: https://ssrn.com/abstract=2236265 (accessed on 5 July 2021).
- Madlener, R.; Schumacher, M. Economic Evaluation of the Repowering of Onshore Wind Power Plants in Germany. Z Energiewirtsch 2011, 35, 297–320. [Google Scholar] [CrossRef]
- Zimmermann, T.; Goessling-Reisemann, S. Optimal repowering of wind energy converters: Energy demand and CO2 intensity as indicators. In Proceedings of the Life Cycle Management Conference, Berlin, Germany, 28–31 May 2011. [Google Scholar]
- Jansen, S. Repowering Strategies for Wind Farms in Northern Germany—A Feasibility Study. Ph.D. Thesis, Vienna School of International Studies, Wien, Austria, 2013. [Google Scholar]
- Kalioras, K. Repowering of Small Scale Wind Power Park in the Region of Kastri–Evia Island, Greece. Ph.D. Thesis, KTH Industrial Engineeing and Management, Stockholm, Sweden, 2013. [Google Scholar]
- Lantz, E.; Leventhal, M.; Baring-Gould, I. National Renewable Energy Laboratory (NREL). Wind Power Project Repowering: Financial Feasibility, Decision Drivers, and Supply Chain Effects. 2011. Available online: http://www.ntis.gov/help/ordermethods.aspx (accessed on 5 July 2021).
- Silvosa, A.C.; Gómez, G.I.; Río, P.D. Analyzing the Techno-Economic Determinants for the Repowering of Wind Farms. Eng. Econ. J. Devoted Probl. Cap. Invest. 2013, 58, 282–303. [Google Scholar] [CrossRef]
- Frantál, B. Have Local Government and Public Expectations of Wind Energy Project Benefits Been Met? Implications for Repowering Schemes. J. Environ. Policy Plan. 2015, 17, 217–236. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Campíñez-Romero, S.; Pérez-Molina, C.; Mur-Pérez, F. Repowering: An actual possibility for wind energy in Spain in a new scenario without feed-in-tariffs. Renew. Sustain. Energy Rev. 2015, 41, 319–337. [Google Scholar] [CrossRef]
- Prabu, T.; Kottayil, S.K. Repowering a Windfarm–A Techno-Economic Approach. Wind Eng. 2015, 39, 385–398. [Google Scholar] [CrossRef]
- Dahl, E.L.; May, R.; Nygard, T.; Astrom, J.; Diserud, O.H.; Reitan, R. Repowering Smola wind–power plant. An assessment of avian conflicts. Nor. Inst. Nat. Res. 2015, 1135, 41. [Google Scholar]
- Weiss, T. Wind Power Project Development: Financial Viability of Repowering with RETScreen as a Decision Aid Tool. Ph.D. Thesis, Department of Earth Sciences, Uppsala University, Uppsala, Sweden, 2015. Available online: http://uu.diva-portal.org/smash/get/diva2:840649/FULLTEXT01.pdf (accessed on 5 July 2021).
- Lantz, E.; Mai, T.; Wiser, R.H.; Krishnan, V. Long-term implications of sustained wind power growth in the United States: Direct electric system impacts and costs. Appl. Energy 2016, 179, 832–846. [Google Scholar] [CrossRef] [Green Version]
- Oliver Genovés, J. Análisis de Viabilidad de una Actuación de Repowering de un Parque Eólico de 1ª Generación de 30 MW con Aerogeneradores de Tecnologia Actual en Tarifa. (In Spanish). Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2016. [Google Scholar]
- Paul, A.; Prabu, T. Technical and economic feasibility study on repowering of wind farms. Indian J. Sci. Technol. 2016, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Romano, T.; Mennel, T.; Scatasta, S. Comparing feed-in tariffs and renewable obligation certificates: The case of repowering wind farms. Econ. Polit. Ind. 2017, 44, 291–314. [Google Scholar] [CrossRef]
- Serri, L.; Lembo, E.; Airoldi, D.; Gelli, C.; Beccarello, M. Wind energy plants repowering potential in Italy: Technical-economic assessment. Renew. Energy 2018, 115, 382–390. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D.; Grau, L. Achieving Germany’s wind energy expansion target with an improved wind turbine siting approach. Energy Convers. Manag. 2018, 173, 383–398. [Google Scholar] [CrossRef]
- Ramírez, F.J.; Honrubia-Escribano, A.; Gómez-Lázaro, E.; Pham, D.T. The role of wind energy production in addressing the European renewable energy targets: The case of Spain. J. Clean. Prod. 2018, 196, 1198–1212. [Google Scholar] [CrossRef]
- Villena-Ruiz, R.; Ramirez, F.J.; Honrubia-Escribano, A.; Gómez-Lázaro, E. A techno-economic analysis of a real wind farm repowering experience: The Malpica case. Energy Convers. Manag. 2018, 172, 182–199. [Google Scholar] [CrossRef]
- Ziegler, L.; Gonzalez, E.; Rubert, T.; Smolka, U.; Melero, J.J. Lifetime extension of onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK. Renew. Sustain. Energy Rev. 2018, 82, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- Madlener, R.; Glensk, B.; Gläsel, L. Optimal Timing of Onshore Wind Repowering in Germany under Policy Regime Changes: A Real Options Analysis. Energies 2019, 12, 4703. [Google Scholar] [CrossRef] [Green Version]
- Manchado, C.; Gomez-Jauregui, V.; Lizcano, P.E.; Iglesias, A.; Galvez, A.; Otero, C. Wind farm repowering guided by visual impact criteria. Renew. Energy 2019, 135, 197–207. [Google Scholar] [CrossRef]
- Michaud, S. Techno-Economic Analysis of Wind Farm Repowering Strategies in France. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2010. [Google Scholar]
- Vicente-Ramírez, J.; García-Vásquez, E.; Iracheta-Cortez, R.; Dorrego-Portela, J. Economic feasibility study for the repowering of La Venta I and La Venta II wind farms in Mexico. In Proceedings of the IEEE 39th Central America and Panama Convention (CONCAPAN XXXIX), Guatemala City, Guatemala, 20–22 November 2019. [Google Scholar] [CrossRef]
- Kitzing, L.; Jensen, M.K.; Telsnig, T.; Lantz, E. Multifaceted drivers for onshore wind energy repowering and their implications for energy transition. Nat. Energy 2020, 5, 1012–1021. [Google Scholar] [CrossRef]
- Pryor, S.; Barthelmie, R.; Shepherd, T. 20% of US electricity from wind will have limited impacts on system efficiency and regional climate. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- De Bona, J.C.; Ferreira, J.C.E.; Ordoñez Duran, J.F. Analysis of scenarios for repowering wind farms in Brazil. Renew. Sustain. Energy Rev. 2021, 135, 110197. [Google Scholar] [CrossRef]
- Grau, L.; Jung, C.; Schindler, D. Sounding out the repowering potential of wind energy–A scenario-based assessment from Germany. J. Clean. Prod. 2021, 293, 126094. [Google Scholar] [CrossRef]
- Al Hamed, H. Onshore Wind Farm Repowering Alternative Scenarios and Cost Assessment. Ph.D. Thesis, Department of Earth Sciences, Uppsala University, Uppsala, Sweden, 2021. Available online: http://www.diva-portal.org/smash/get/diva2:1530274/FULLTEXT01.pdf (accessed on 5 July 2021).
- Gil-García, I. Integración del Recurso Eólico Marino en los Sectores del Transporte y Climatización: Estudio de Transición Energética en la Costa Este de EEUU (In Spanish). Ph.D. Thesis, Universidad Politécnica de Cartagena, Cartagena, Spain, 2020. [Google Scholar]
- Hötker, H. The Impact of Repowering of Wind Farmson Birds and Bats; Michael-Otto-Institute within NABU: Bergenhusen, Germany, 2006. [Google Scholar]
- Smallwood, K.S.; Neher, L.; Bell, D.A. Map-Based Repowering and Reorganization of a Wind Resource Area toMinimize Burrowing Owl and Other Bird Fatalities. Energies 2009, 2, 915–943. [Google Scholar] [CrossRef]
- Goyal, M. Repowering—Next big thing in India. Renew. Sustain. Energy Rev. 2010, 14, 1400–1409. [Google Scholar] [CrossRef]
- Smallwood, K.S.; Bell, D.A.; Snyder, S.A.; DiDonato, J.E. Novel scavenger removal trials increase wind turbine–Caused avian fatality estimates. J. Wildl. Manag. 2010, 74, 1089–1096. [Google Scholar] [CrossRef]
- Sen, N.; Ahmed, S.; Lanjewar, A. RE-powering potential of Indian wind farms: A review. Int. J. Eng. Res. Appl. 2012, 2, 1269–1276. [Google Scholar]
- Zimmermann, T. Assessing repowering and update scenarios for wind energy converters. In Proceedings of the 25th International Conference on Efficiency, Cost, Optimization and Simulation of Energy Conversion Systems and Processes, Perugia, Italy, 26–29 June 2012. [Google Scholar]
- Nivedh, B.; Kumudini-Devi, R.; Sreevalsanc, E. Repowering of Wind Farms—A Case Study. Wind Eng. 2013, 37, 137–150. [Google Scholar] [CrossRef]
- Rodríguez, R.; Rodríguez-Monroy, C.; Rodríguez, R.; Calvo, F. Analysis of Renewable Energy Policies Related to Repowering the Wind Energy Sector: The Spanish Case. In Proceedings of the 11th Latin American and Caribbean Conference for Engineering and Technology, Cancun, Mexico, 14–16 August 2012. [Google Scholar]
- Everaert, J. Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. Bird Study 2014, 61, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Marques, A.T.; Batalha, H.; Rodrigues, S.; Costa, H.; Pereira, M.J.R.; Fonseca, C.; Mascarenhas, M.; Bernardino, J. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 2014, 179, 40–52. [Google Scholar] [CrossRef]
- Arnett, E.B.; May, R.F. Mitigating wind energy impacts on wildlife: Approaches for multiple taxa. Hum.-Wildl. Interact. 2016, 10, 5. [Google Scholar]
- Castro-Santos, L.; Vizoso, A.F.; Camacho, E.M.; Piegiari, L. Costs and feasibility of repowering wind farms. Energy Sources B Econ. Plan. Policy 2016, 11, 974–981. [Google Scholar] [CrossRef]
- Ferri, V.; Battisti, C.; Soccini, C. Bats in a Mediterranean mountainous landscape: Does wind farm repowering induce changes at assemblage and species level? Environ. Manag. 2016, 57, 1240–1246. [Google Scholar] [CrossRef]
- Mendez, J.; Lopez, G. Limits of Repowering Renewable Sources in Electric Islands. In Proceedings of the International Conference on Modern Electrical Power Engineering—ICMEPE’16, Las Palmas de Gran Canaria, Spain, 6–8 July 2016. [Google Scholar]
- Santos-Alamillos, F.; Thomaidis, N.; Usaola-García, J.; Ruiz-Arias, J.; Pozo-Vázquez, D. Exploring the mean-variance portfolio optimization approach for planning wind repowering actions in Spain. Renew. Energy 2017, 106, 335–342. [Google Scholar] [CrossRef]
- Shawn Smallwood, K. The Challenges of Addressing Wildlife Impacts When Repowering Wind Energy Projects; Springer International Publishing: Berlin, Germany, 2017; pp. 175–187. [Google Scholar] [CrossRef]
- Karoui, R.; Khadraoui, H.; Bacha, F. Repowering of the Wind Farm of Sidi-Daoud Tunisia. In Proceedings of the International Conference on Advanced Systems and Electric Technologies, Hammamet, Tunisia, 14–17 January 2017. [Google Scholar]
- Karoui, R.; Bacha, F.; Hasni, A.; Khadraoui, H. Analysis of the Repowering Wind Farm of Sidi-Daoud in Tunisia. IEEE Trans. Ind. Appl. 2018, 55, 3011–3023. [Google Scholar] [CrossRef]
- Martínez, E.; Latorre-Biel, J.; Jiménez, E.; Sanz, F.; Blanco, J. Life cycle assessment of a wind farm repowering process. Renew. Sustain. Energy Rev. 2018, 93, 260–271. [Google Scholar] [CrossRef]
- Watson, R.T.; Kolar, P.S.; Ferrer, M.; Nygård, T.; Johnston, N.; Hunt, W.G.; Smit-Robinson, H.A.; Farmer, C.J.; Huso, M.; Katzner, T.E. Raptor interactions with wind energy: Case studies from around the world. J. Raptor Res. 2018, 52, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kadhirvel, B.; Ramaswamy, S.; Kirubaharan, V.; Bastin, J.; ShobanaDevi, A.; Kanagavel, P.; Balaraman, K. Optimization of the Wind Farm Layout by Repowering the old Wind Farm and integrating Solar Power Plants: A Case Study. Int. J. Renew. Energy Res. (IJRER) 2020, 10, 1287–1301. [Google Scholar]
- Das, A.; Jani, H.K.; Kachhwaha, S.S.; Nagababu, G. Assessment of Factors Affecting Onshore Wind Power Deployment in India. Sci. J. Riga Tech. Univ. Environ. Clim. Technol. 2020, 24, 185–208. [Google Scholar] [CrossRef]
- Fuchs, C.; Kasten, J.; Vent, M. Current State and Future Prospective of Repowering Wind Turbines: An Economic Analysis. Energies 2020, 13, 3048. [Google Scholar] [CrossRef]
- Guan, J. Westerly breezes and easterly gales: A comparison of legal, policy and planning regimes governing onshore wind in Germany and China. Energy Res. Soc. Sci. 2020, 67, 101506. [Google Scholar] [CrossRef]
- Syed, A.H.; Javed, A.; Feroz, R.M.A.; Calhoun, R. Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations. Appl. Energy 2020, 268, 115050. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, J.; Baniotopoulos, C. Repowering Steel Tubular Wind Turbine Towers Enhancing them by Internal Stiffening Rings. Energies 2020, 13, 1538. [Google Scholar] [CrossRef] [Green Version]
- Huso, M.; Conkling, T.; Dalthorp, D.; Davis, M.; Smith, H.; Fesnock, A.; Katzner, T. Relative energy production determines effect of repowering on wildlife mortality at wind energy facilities. J. Appl. Ecol. 2021, 56, 1284–1290. [Google Scholar] [CrossRef]
- Lacal-Arántegui, R.; Uihlein, A.; Yusta, J.M. Technology effects in repowering wind turbines. Wind Energy 2020, 23, 660–675. [Google Scholar] [CrossRef]
- Schaub, T.; Klaassen, R.H.; Bouten, W.; Schlaich, A.E.; Koks, B.J. Collision risk of Montagu’s Harriers Circus pygargus with wind turbines derived from high-resolution GPS tracking. Ibis 2020, 162, 520–534. [Google Scholar] [CrossRef] [Green Version]
- Szumilas-Kowalczyk, H.; Pevzner, N.; Giedych, R. Long-term visual impacts of aging infrastructure: Challenges of decommissioning wind power infrastructure and a survey of alternative strategies. Renew. Energy 2020, 150, 550–560. [Google Scholar] [CrossRef]
- Gulatowski-Henk, M. Public Attitude Towards Wind Power in a Developed and a Developing Wind Market–Case Study of Spain and Poland; Uppsala Universitet: Uppsala, Sweden, 2017; Available online: http://uu.diva-portal.org/smash/get/diva2:1116807/FULLTEXT01.pdf (accessed on 5 July 2021).
- Bezbradica, M.; Kerkvliet, H.; Borbolla, I.M.; Lehtimäki, P. Introducing multi-criteria decision analysis for wind farm repowering: A case study on Gotland. In Proceedings of the International Conference Multidisciplinary Engineering Design Optimization (IEEE–MEDO), Belgrade, Serbia, 14–16 September 2016; pp. 1–8. [Google Scholar]
- Hou, P.; Enevoldsen, P.; Hu, W.; Chen, C.; Chen, Z. Offshore wind farm repowering optimization. Appl. Energy 2017, 208, 834–844. [Google Scholar] [CrossRef]
- He, W.; Grant, R.J.; Baden, V.; Suntharalingam, J. Innovative alternatives for repowering offshore wind farms. J. Phys. Conf. Ser. 2020, 1618, 042037. [Google Scholar] [CrossRef]
- Bergvall, D. Cost Comparison of Repowering Alternatives for Offshore Wind Farms. Ph.D. Thesis, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Uppsala University, Uppsala, Sweden, 2019. Available online: https://www.diva-portal.org/ (accessed on 5 July 2021).
- Sun, H.; Gao, X.; Yang, H. Investigation into offshore wind farm repowering optimization in Hong Kong. Int. J.-Low-Carbon Technol. 2019, 14, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.B. Futureproof Offshore Wind Turbine Foundations–Reducing LCOE and Environmental Impacts through Repowering Focused Selection. Ph.D. Thesis, Reykjavík University, Reykjavík, Iceland, August 2020. Available online: https://skemman.is/handle/1946/37113 (accessed on 5 July 2021).
- Zuo, T.; Zhang, Y.; Meng, K.; Tong, Z.; Dong, Z.Y.; Fu, Y. Collector System Topology Design for Offshore Wind Farm’s Repowering and Expansion. IEEE Trans. Sustain. Energy 2021, 12, 847–859. [Google Scholar] [CrossRef]
- Jadali, A.M.; Ioannou, A.; Salonitis, K.; Kolios, A. Decommissioning vs. repowering of offshore wind farms–A techno-economic assessment. Int. J. Adv. Manuf. Technol. 2021, 112, 2519–2532. [Google Scholar] [CrossRef]
- Renewable Power Generation Costs in 2020; Technical Report; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, June 2021; ISBN 978-92-9260-348-9. Available online: http://www.irena.org/publications/ (accessed on 5 July 2021).
- 1991–2001 The First Offshore Wind Farms. Making Green Energy Affordable. Technical Report, Ørsted A/S, Denmark. Available online: https://orsted.com/en/about-us/whitepapers/making-green-energy-affordable/1991-to-2001-the-first-offshore-wind-farms (accessed on 5 July 2021).
- Global Wind Report 2020. Technical Report. Global Wind Energy Council (GWEC), 2021. Available online: https://www.gwec.net (accessed on 5 July 2021).
- Goch, G.; Knapp, W.; Härtig, F. Precision engineering for wind energy systems. CIRP Ann. 2012, 61, 611–634. [Google Scholar] [CrossRef]
- Renewable Energy. Technical Report. European Commission (EU), 2021. Available online: https://ec.europa.eu/energy/topics/renewable-energy_en (accessed on 5 July 2021).
- Tambach, M.; Hasselaar, E.; Itard, L. Assessment of current Dutch energy transition policy instruments for the existing housing stock. Energy Policy 2010, 38, 981–996. [Google Scholar] [CrossRef]
- Meyer, N.I. Learning from wind energy policy in the EU: Lessons from Denmark, Sweden and Spain. Eur. Environ. 2007, 17, 347–362. [Google Scholar] [CrossRef]
Category | Factors |
---|---|
Technical | Selection and location of wind turbines. |
New capacity to install. | |
Annual electricity generation. | |
Capacity factor | |
Losses due to the wake effect | |
Changes in infrastructures (electrical work, foundations) | |
Economic | Costs of the infrastructure associated with the investment (CAPEX). |
Cost focused on the exploitation phase (OPEX). | |
Financial indicators (Net present value, Internal rate of return). | |
Levelized cost of energy. | |
Environmental | Reduction emissions CO. |
Flora and fauna impact. | |
Social | Visual impact. |
The noise impact in quality of life. | |
Land use. | |
Distance to urban areas, roads or other economic activities | |
Employability | |
Political | Political measures established in favor of renewable energies. |
Incentives and taxes. |
Ref. | Year | Categories | Region | ||||
---|---|---|---|---|---|---|---|
Technical | Economic | Environmental | Political | Social | |||
[36] | 2001 | X | X | Netherlands | |||
[37] | 2006 | X | X | Denmark | |||
[38] | 2010 | X | X | Germany | |||
[39] | 2010 | X | X | Germany | |||
[40] | 2010 | X | X | X | Denmark | ||
[41] | 2011 | X | X | X | Spain | ||
[42] | 2011 | X | X | X | Worldwide | ||
[43] | 2011 | X | X | Denmark | |||
[44] | 2011 | X | X | X | X | Germany | |
[45] | 2011 | X | X | Germany | |||
[46] | 2013 | X | X | X | Germany | ||
[47] | 2013 | X | X | Greece | |||
[48] | 2013 | X | X | X | USA | ||
[49] | 2013 | X | X | X | Spain | ||
[50] | 2015 | X | X | X | X | Czech Republic | |
[51] | 2015 | X | X | X | Spain | ||
[52] | 2015 | X | X | X | India | ||
[53] | 2015 | X | X | Norway | |||
[54] | 2015 | X | X | Germany | |||
[55] | 2016 | X | X | USA | |||
[56] | 2016 | X | X | X | X | Spain | |
[57] | 2016 | X | X | India | |||
[58] | 2017 | X | X | Germany | |||
[59] | 2017 | X | X | Italy | |||
[60] | 2018 | X | X | Germany | |||
[61] | 2018 | X | X | Spain | |||
[62] | 2018 | X | X | Spain | |||
[63] | 2018 | X | X | X | X | DE, ES, DK, UK | |
[64] | 2019 | X | X | X | Germany | ||
[65] | 2019 | X | X | Spain | |||
[66] | 2019 | X | X | France | |||
[67] | 2019 | X | X | Mexico | |||
[68] | 2020 | X | X | X | Denmark | ||
[69] | 2020 | X | X | USA | |||
[70] | 2021 | X | X | Brazil | |||
[71] | 2021 | X | X | X | Germany | ||
[72] | 2021 | X | X | Denmark |
Ref. | Year | Categories | Region | ||||
---|---|---|---|---|---|---|---|
Technical | Economic | Environmental | Political | Social | |||
[74] | 2006 | X | Germany | ||||
[75] | 2009 | X | USA | ||||
[76] | 2010 | X | India | ||||
[77] | 2010 | X | USA | ||||
[78] | 2012 | X | India | ||||
[79] | 2012 | X | No case study | ||||
[80] | 2013 | X | India | ||||
[81] | 2013 | X | Spain | ||||
[82] | 2014 | X | Belgium | ||||
[83] | 2014 | X | No case study | ||||
[84] | 2016 | X | No case study | ||||
[85] | 2016 | X | Spain | ||||
[86] | 2016 | X | Italy | ||||
[87] | 2016 | X | Spain | ||||
[88] | 2017 | X | Spain | ||||
[89] | 2017 | X | USA | ||||
[90] | 2017 | X | Tunisia | ||||
[91] | 2018 | X | Tunisia | ||||
[92] | 2018 | X | No case study | ||||
[93] | 2018 | X | Worldwide | ||||
[94] | 2020 | X | India | ||||
[95] | 2020 | X | India | ||||
[96] | 2020 | X | Germany | ||||
[97] | 2020 | X | DE, CN | ||||
[98] | 2020 | X | Pakistan | ||||
[99] | 2020 | X | No case study | ||||
[100] | 2020 | X | USA | ||||
[101] | 2020 | X | Germany | ||||
[102] | 2020 | X | Germany | ||||
[103] | 2020 | X | USA |
Ref. | Year | Categories | Region | ||||
---|---|---|---|---|---|---|---|
Technical | Economic | Environmental | Political | Social | |||
[105] | 2016 | X | X | X | X | No case study | |
[106] | 2017 | X | X | Denmark | |||
[108] | 2019 | X | X | No case study | |||
[109] | 2019 | X | X | Denmark | |||
[107] | 2020 | X | X | No case study | |||
[110] | 2020 | X | X | China | |||
[111] | 2020 | X | X | China | |||
[112] | 2021 | X | X | UK |
Country | Onshore | Offshore |
---|---|---|
Germany | [38,39,44,45,46,54,58,60,64,71,96,101,102] | — |
Spain | [41,49,51,56,61,62,65,81,85,87,88] | — |
USA | [48,55,69,75,77,89,100,103] | — |
No case of study | [79,83,84,92,99] | [105,107,110] |
Denmark | [37,40,43,68,72] | [106,108] |
India | [52,57,76,78,80,94,95] | — |
Several countries | [42,63,93,97] | — |
Italy | [59,86] | — |
Tunisia | [90,91] | — |
China | — | [109,111] |
Netherlands | [36] | — |
Greece | [47] | — |
Czech Republic | [50] | — |
Norway | [53] | — |
France | [66] | — |
Mexico | [67] | — |
Brazil | [70] | — |
Belgium | [82] | — |
Pakistan | [98] | — |
UK | — | [112] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-García, I.C.; Fernández-Guillamón, A.; García-Cascales, M.S.; Molina-García, A. A Multi-Factorial Review of Repowering Wind Generation Strategies. Energies 2021, 14, 6280. https://doi.org/10.3390/en14196280
Gil-García IC, Fernández-Guillamón A, García-Cascales MS, Molina-García A. A Multi-Factorial Review of Repowering Wind Generation Strategies. Energies. 2021; 14(19):6280. https://doi.org/10.3390/en14196280
Chicago/Turabian StyleGil-García, Isabel C., Ana Fernández-Guillamón, M. Socorro García-Cascales, and Angel Molina-García. 2021. "A Multi-Factorial Review of Repowering Wind Generation Strategies" Energies 14, no. 19: 6280. https://doi.org/10.3390/en14196280
APA StyleGil-García, I. C., Fernández-Guillamón, A., García-Cascales, M. S., & Molina-García, A. (2021). A Multi-Factorial Review of Repowering Wind Generation Strategies. Energies, 14(19), 6280. https://doi.org/10.3390/en14196280