Environmental and Cost Impacts of Food Waste in University Canteen from a Life Cycle Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Life Cycle Assessment (LCA) and Life Cycle Cost (LCC)
2.2.1. Goal and Scope
2.2.2. Life Cycle Inventory (LCI)
- Procurement Phase
- Transportation Phase
- Cooking Phase
- Disposal Phase
2.3. Sensitivity Analysis
3. Results
3.1. Food Waste Quantification
3.2. The Carbon Footprint of Food Waste
3.3. The Cost of Food Waste
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
- The scale of food waste in university canteens is staggering, with staple food waste being the highest (46.14%), followed by vegetables and soy products (28.34%). For this reason, canteens should be equipped with small servings of staple food and small dishes, and set different prices. Canteens can also strengthen students’ education on saving food and reduce food waste by setting up persuaders and establishing meal communication mechanisms.
- The carbon footprint of food waste in university canteens mainly comes from the use of electricity and natural gas (68.71%) in the cooking phase. This requires the use of more energy-efficient electrical appliances in university canteens, attention to energy conservation, and consider the use of renewable energy sources.
- The cost of food waste in university canteens mainly comes from the purchase of livestock and poultry meat in the procurement phase (26.04%) and the payment of labor costs in the cooking phase (38.17%). This calls on students to reduce meat consumption and waste, and to have a balanced diet. Labor wages are stable and unlikely to change.
- Sensitivity analysis results show that the two most important variables that affect the life cycle carbon emissions of food waste in university canteens are the use of natural gas and electricity in the cooking phase, which provides a priority for measures to reduce environmental impact.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Food Losses and Food Waste-Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- Vittuari, M.; De Menna, F.; Pagani, M. The hidden burden of food waste: The double energy waste in Italy. Energies 2016, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- FAO. Food Wastage Footprint: Impacts on Natural Resources: Summary Report; FAO: Rome, Italy, 2013. [Google Scholar]
- Gustavsson, J.; Cederberg, C.; Sonesson, U. Global Food Losses and Food Waste: Extent, Causes and Prevention; Study Conducted for the International Congress Save Food; At Interpack 2011, 16–17 May, Düsseldorf, Germany; FAO: Rome, Italy, 2011; ISBN 978-92-5-107205-9. [Google Scholar]
- Hoehn, D.; Margallo, M.; Laso, J.; García-Herrero, I.; Bala, A.; Fullana-I-Palmer, P.; Irabien, A.; Aldaco, R. Energy embedded in food loss management and in the production of uneaten food: Seeking a sustainable pathway. Energies 2019, 12, 767. [Google Scholar] [CrossRef] [Green Version]
- FAO. Food Wastage Footprint & Climate Change; FAO: Rome, Italy, 2015. [Google Scholar]
- FAO. Food Wastage Footprint: Fool Cost–Accounting, Final Report; FAO: Rome, Italy, 2014; ISBN 978-92-5-108512-7. [Google Scholar]
- Scholz, K.; Eriksson, M.; Strid, I. Carbon footprint of supermarket food waste. Resour. Conserv. Recycl. 2015, 94, 56–65. [Google Scholar] [CrossRef]
- Xue, L.; Liu, G.; Parfitt, J.; Liu, X.; Van Herpen, E.; Stenmarck, Å.; O’Connor, C.; Östergren, K.; Cheng, S. Missing food, missing data? A critical review of global food losses and food waste data. Environ. Sci. Technol. 2017, 51, 6618–6633. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, K.; Kołodziejczak, M. The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Z.; Liu, H.; Zhong, F.; Bai, J.; Cheng, S. Food-away-from-home plate waste in China: Preference for variety and quantity. Food Policy 2020, 97, 101918. [Google Scholar] [CrossRef]
- Alharbi, N.S.; Qattan, M.Y.; Alhaji, J.H. Towards sustainable food services in hospitals: Expanding the concept of ‘plate waste’ to ‘tray waste’. Sustainability 2020, 12, 6872. [Google Scholar] [CrossRef]
- Charlebois, S.; Creedy, A.; von Massow, M. “Back of house”—focused study on food waste in fine dining: The case of Delish restaurants. Int. J. Cult. Tour. Hosp. Res. 2015, 9, 278–291. [Google Scholar] [CrossRef]
- Wenlock, R.W.; Buss, D.H.; Derry, B.J.; Dixon, E.J. Household food wastage in Britain. Br. J. Nutr. 1980, 43, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, M.; Malefors, C.; Bergström, P.; Eriksson, E.; Persson Osowski, C. Quantities and quantification methodologies of food waste in Swedish hospitals. Sustainability 2020, 12, 3116. [Google Scholar] [CrossRef] [Green Version]
- Costello, C.; Birisci, E.; McGarvey, R. Food waste in campus dining operations: Inventory of pre- and post-consumer mass by food category, and estimation of embodied greenhouse gas emissions. Renew. Agric. Food Syst. 2016, 31, 191–201. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Projected Data from the Annual Population Sample Survey. Available online: http://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 31 December 2019).
- Balzaretti, C.M.; Ventura, V.; Ratti, S.; Ferrazzi, G.; Spallina, A.; Carruba, M.O.; Castrica, M. Improving the overall sustainability of the school meal chain: The role of portion sizes. Eat. Weight. Disord. Stud. Anorex. Bulim. Obes. 2018, 25, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Derqui, B.; Fayos, T.; Fernandez, V. Towards a more sustainable food supply chain: Opening up invisible waste in food service. Sustainability 2016, 8, 693. [Google Scholar] [CrossRef] [Green Version]
- Wyse, R.; Yoong, S.L.; Dodds, P.; Campbell, L.; Delaney, T.; Nathan, N.; Janssen, L.; Reilly, K.; Sutherland, R.; Wiggers, J.; et al. Online canteens: Awareness, use, barriers to use, and the acceptability of potential online strategies to improve public health nutrition in primary schools. Health Promo. J. Aust. 2017, 28, 67–71. [Google Scholar] [CrossRef]
- Wrap, W. Household Food and Drink Waste in the UK; WRAP: Banbury, UK, 2009. [Google Scholar]
- Falasconi, L.; Vittuari, M.; Politano, A.; Segrè, A. Food waste in school catering: An Italian case study. Sustainability 2015, 7, 14745–14760. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.L.; Cunha, L.M.; Rodrigues, S.S.; Rocha, A. Determination of plate waste in primary school lunches by weighing and visual estimation methods: A validation study. Waste Manag. 2014, 34, 1362–1368. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, S.; Liu, X.; Cao, X.; Xue, L.; Liu, G. Plate waste in school lunch programs in Beijing, China. Sustainability 2016, 8, 1288. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.W.; Cheng, S.K.; Cao, X.C.; Zhang, D.; Liu, X.J.; Qin, Q.; Liu, Y.; Wang, L.E. Review of food loss and waste research and its prospect. J. Nat. Resour. 2015, 30, 523–536. (In Chinese) [Google Scholar]
- Adelson, S.F.; Deláney, I.; Miller, C.; Noble, I.T. Discard of edible food in households. J. Int. Econ. 1963, 55, 633–638. [Google Scholar]
- Abeliotis, K.; Chroni, C.; Kyriacou, A.; Lasaridi, K. Food waste within households: A review on the generated quantities and potential for prevention. In Proceedings of the ATHENS 2014 2nd International Conference on Sustainable Solid Waste Management, Athens, Greece, 12–14 June 2014. [Google Scholar]
- Xu, S.W. An analysis on food consumption and waste in China. Food Nutr. China 2005, 11, 4–8. (In Chinese) [Google Scholar]
- Wang, L.E.; Cheng, S.K.; Liu, G.; Liu, X.J.; Bai, J.F.; Zhang, D.; Gao, L.W.; Cao, X.C.; Liu, Y. Study on theories and methods of Chinese food waste. J. Nat. Resour. 2015, 30, 715–724. (In Chinese) [Google Scholar]
- Hanks, A.S.; Wansink, B.; Just, D.R. Reliability and accuracy of real-time visualization techniques for measuring school cafeteria tray waste: Validating the quarter-waste method. J. Acad. Nutr. Diet. 2014, 114, 470–474. [Google Scholar] [CrossRef] [Green Version]
- FUSIONS Estimates of European Food Waste Levels. FUSIONS Reducing Food Waste through Social Innovation. Food Use for Social Innovation by Optimising Waste Prevention Strategies (FUSIONS); Swedish Environmental Research Institute: Stockholm, Sweden, 2016; Available online: https://www.eu-fusions.org/phocadownload/Publications/Estimates%20of%20European%20food%20waste%20levels.pdf (accessed on 23 November 2020).
- European Union. DIRECTIVE 2008/98/EC of the European Parliament and of the Council, 19 November 2008 on Waste and Repealing Certain Directives; European Union: Brussels, Belgium, 2008. [Google Scholar]
- Eriksson, M.; Osowski, C.P.; Björkman, J.; Hansson, E.; Malefors, C.; Eriksson, E.; Ghosh, R. The tree structure—A general framework for food waste quantification in food services. Resour. Conserv. Recycl. 2018, 130, 140–151. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Sun, L.; Liu, H.M. Investigation and research on current university students’ waste behavior: Taking the investigation of students in jilin agricultural university as an example. J. Educ. I. Jilin Prov. 2013, 29, 16–17. (In Chinese) [Google Scholar]
- Kowalewska, M.T.; Kołłajtis-Dołowy, A. Food, nutrient, and energy waste among school students. Br. Food J. 2018, 120, 1807–1831. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, F.; Qian, Z. A survey of canteen food waste and its carbon footprint in universities national wide. J. Arid. Land Resour. Environ. 2020, 34, 49–55. (In Chinese) [Google Scholar]
- Brenes-Peralta, L.; Jiménez-Morales, M.F.; Campos-Rodríguez, R.; De Menna, F.; Vittuari, M. Decision-making process in the circular economy: A case study on university food waste-to-energy actions in Latin America. Energies 2020, 13, 2291. [Google Scholar] [CrossRef]
- Derqui, B.; Fernandez, V.; Fayos, T. Towards more sustainable food systems. Addressing food waste at school canteens. Appetite 2018, 129, 1–11. [Google Scholar] [CrossRef]
- Engstrom, R.; Carlsson-Kanyama, A. Food losses in food service institutions examples from Sweden. Food Policy 2004, 29, 203–213. [Google Scholar] [CrossRef]
- Yu, W.; Xu, S.W.; Wang, Y.; Cheng, S.K.; Liu, X.J.; Bai, J.F.; Wang, L.E.; Zhang, D.; Gao, L.W.; Cao, X.C.; et al. Research methods exploring of food waste in the catering industry. Agric. Outlook 2016, 12, 67–70. (In Chinese) [Google Scholar]
- Li, F.; Qian, Z.; Qian, L. Report on Food Waste in College and University Canteen; Economic Management Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- ISO. ISO 14044, Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. ISO 14040 Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- De Menna, F.; Dietershagen, J.; Loubiere, M.; Vittuari, M. Life cycle costing of food waste: A review of methodological approaches. Waste Manag. 2018, 73, 1–13. [Google Scholar] [CrossRef]
- Hunkeler, D.; Lichtenvort, K.; Rebitzer, G. Environmental Life Cycle Costing; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (Part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Huang, H.P.; Li, Y.L.; Yang, S.L. Spatio-temporal evolutio characteristics of carbon emissions from food consumption of urban residents in China. Chin. J. Environ. Manag. 2021, 13, 112–120. (In Chinese) [Google Scholar]
- An, Y.F.; Peng, K.; Bao, J. Research on residents’ food consumption carbon emission calculation and its factors decompositio. J. Agrotech. Econ. 2014, 3, 74–82. (In Chinese) [Google Scholar]
- Zhi, J.; Gao, J.X. Analysis of carbon emission caused by food consumption in urban and rural inhabitants in China. Prog. Geog. 2009, 28, 429–434. (In Chinese) [Google Scholar]
- Chen, J.; Wang, S.; Ou, C.Y.; Jiang, X. Study on carbon emission measurement and dynamic optimization of fresh meat supply chain. J. China Agric. Univ. 2020, 25, 165–182. (In Chinese) [Google Scholar]
- Wu, Y.; Wang, X.K.; Lu, F. The carbon footprint of food consumption in Beijing. Acta Ecol. Sin. 2012, 32, 1570–1577. (In Chinese) [Google Scholar]
- Du, X.; Chen, T.; Li, H.; Ren, L.H.; Jin, Y.Y. Environment impact analysis of two typical restaurant garbage regeneration technologies. Chinese J. Environ. Eng. 2010, 4, 189–194. (In Chinese) [Google Scholar]
- Saltelli, A.; Chan, K.; Scott, E.M. Sensitivity Analysis; John Wiley and Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Wei, W.; Larrey-Lassalle, P.; Faure, T.; Dumoulin, N.; Roux, P.; Mathias, J.-D. How to conduct a proper sensitivity analysis in life cycle assessment: Taking into account correlations within lci data and interactions within the lca calculation model. Environ. Sci. Technol. 2014, 49, 377–385. [Google Scholar] [CrossRef]
- Heijungs, R.; Kleijn, R. Numerical approaches towards life cycle interpretation five examples. Int. J. Life Cycle Assess. 2001, 6, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Bala, A.; Raugei, M.; Benveniste, G.; Gazulla, C.; Fullana-i-Palmer, P.; Gala, A.B. Simplified tools for global warming potential evaluation: When ‘good enough’ is best. Int. J. Life Cycle Assess. 2010, 15, 489–498. [Google Scholar] [CrossRef]
- Igos, E.; Benetto, E.; Meyer, R.; Baustert, P.; Othoniel, B. How to treat uncertainties in life cycle assessment studies? Int. J. Life Cycle Assess. 2019, 24, 794–807. [Google Scholar] [CrossRef]
- Guo, M.; Murphy, R. LCA data quality: Sensitivity and uncertainty analysis. Sci. Total Environ. 2012, 435–436, 230–243. [Google Scholar] [CrossRef]
- Rajan, J.; Fredeen, A.L.; Booth, A.L.; Watson, M. Measuring food waste and creating diversion opportunities at Canada’s Green University TM. J. Hunger Environ. Nutr. 2018, 13, 573–586. [Google Scholar] [CrossRef]
- Wu, Y.; Tian, X.; Li, X.; Yuan, H.; Liu, G. Characteristics, influencing factors, and environmental effects of plate waste at university canteens in Beijing, China. Resour. Conserv. Recycl. 2019, 149, 151–159. [Google Scholar] [CrossRef]
- Giordano, A.; Fischbeck, P.; Matthews, H.S. Environmental and economic comparison of diesel and battery electric delivery vans to inform city logistics fleet replacement strategies. Transp. Res. Part D Transp. Environ. 2018, 64, 216–229. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Ardente, F.; Contu, S.; Donno, D.; Beccaro, G.L. Modelling, assessing, and ranking public procurement options for a climate-friendly catering service. Int. J. Life Cycle Assess. 2018, 23, 95–115. [Google Scholar] [CrossRef] [Green Version]
- Jungbluth, N.; Keller, R.L.; König, A. ONE TWO WE—life cycle management in canteens together with suppliers, customers and guests. Int. J. Life Cycle Assess. 2016, 21, 646–653. [Google Scholar] [CrossRef]
- Mistretta, M.; Caputo, P.; Cellura, M.; Cusenza, M.A. Energy and environmental life cycle assessment of an institutional catering service: An Italian case study. Sci. Total Environ. 2019, 657, 1150–1160. [Google Scholar] [CrossRef]
- Cheng, S.K.; Gao, L.W.; Xu, Z.R.; Tang, C.C.; Wang, L.G.; Dhruba, B.G. Food waste in catering industry and its impact on resources and environment in China. China Soft Sci. 2012, 7, 106–114. (In Chinese) [Google Scholar]
Classification | Quantity | Total | |
---|---|---|---|
Gender | Male | 312 | 600 |
Female | 288 | ||
Education | Undergraduate | 540 | 600 |
Graduate student | 60 | ||
Time | Lunch | 330 | 600 |
Dinner | 270 |
Procurement | Transportation | Cooking | Disposal | |
---|---|---|---|---|
Environmental inputs | Cooked wheaten food, rice products, vegetables, soy products, pork, poultry meat, beef and mutton, aquatic products, eggs | Type of vehicle Transportation distance | Water Electricity Gas | Waste transportation Waste disposal |
Cost inputs | Food price | Fuel needed Labour | Water Electricity Gas Labour | Transportation |
Name | Raw and Cooked Conversion Coefficient 1 | Comprehensive Carbon Conversion Coefficient (kgc/kg) 2 |
---|---|---|
Cooked wheaten food | 0.62 | 0.3268 |
Rice products | 0.45 | |
Vegetables | 0.896 | 0.0274 |
Soy products | 1.0 | |
Pork | 1.64 | 1.1892 |
Poultry meat | 1.48 | 1.0062 |
Beef and mutton | 1.54 | 1.3657 |
Aquatic Products | 1.25 | 0.7315 |
Eggs | 1.31 | 1.2621 |
Name | Water | Electricity | Gas |
---|---|---|---|
Carbon emission factor 1 | 0.194 kg CO2-eq/t | 0.85 kg CO2-eq/kWh | 2.09 kg CO2-eq/m3 |
Item | Procurement | Transportation | Cooking | Disposal | Subtotal | Carbon Footprint per Unit Mass |
---|---|---|---|---|---|---|
Cooked wheaten food | 76.99 | 1.59 | 355.61 | 60.55 | 494.74 | 2.10 |
Rice products | 60.81 | 1.25 | 280.63 | 47.82 | 390.51 | 2.10 |
Vegetables | 4.66 | 1.12 | 255.99 | 43.71 | 305.48 | 1.80 |
Soy products | 2.44 | 0.05 | 133.89 | 22.85 | 159.23 | 1.79 |
Livestock and poultry meat | 136.27 | 0.10 | 178.88 | 30.55 | 345.80 | 2.91 |
Aquatic products | 61.70 | 0.08 | 127.46 | 21.68 | 210.92 | 2.50 |
Eggs | 37.84 | 0.13 | 44.99 | 7.70 | 90.66 | 3.02 |
Subtotal | 380.71 | 4.32 | 1377.45 | 234.86 | 1997.34 | - |
Item | Procurement | Transportation | Cooking | Disposal | Subtotal | Unit Mass Cost |
---|---|---|---|---|---|---|
Cooked wheaten food | 876.43 | 35.74 | 2064.21 | 10.67 | 2987.05 | 12.68 |
Rice products | 893.14 | 35.74 | 1628.98 | 8.43 | 2566.29 | 13.79 |
Vegetables | 1156.48 | 34.80 | 1485.98 | 7.70 | 2684.96 | 15.79 |
Soy products | 693.58 | 2.82 | 777.19 | 4.03 | 1477.62 | 16.62 |
Livestock and poultry meat | 4562.30 | 2.35 | 1038.32 | 5.38 | 5608.35 | 47.20 |
Aquatic products | 927.85 | 2.35 | 739.88 | 3.82 | 1673.90 | 19.84 |
Eggs | 233.84 | 23.51 | 261.13 | 1.36 | 519.84 | 17.34 |
Subtotal | 9343.62 | 137.31 | 7995.69 | 41.39 | 17,518.01 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, W.; Wang, L.; Jin, B. Environmental and Cost Impacts of Food Waste in University Canteen from a Life Cycle Perspective. Energies 2021, 14, 5907. https://doi.org/10.3390/en14185907
Li J, Li W, Wang L, Jin B. Environmental and Cost Impacts of Food Waste in University Canteen from a Life Cycle Perspective. Energies. 2021; 14(18):5907. https://doi.org/10.3390/en14185907
Chicago/Turabian StyleLi, Jing, Wei Li, Lei Wang, and Baihui Jin. 2021. "Environmental and Cost Impacts of Food Waste in University Canteen from a Life Cycle Perspective" Energies 14, no. 18: 5907. https://doi.org/10.3390/en14185907
APA StyleLi, J., Li, W., Wang, L., & Jin, B. (2021). Environmental and Cost Impacts of Food Waste in University Canteen from a Life Cycle Perspective. Energies, 14(18), 5907. https://doi.org/10.3390/en14185907