# Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary (Rosmarinus officinalis L.) Leaves

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

_{eff}) is a significant transport characteristic in food and other materials. It also identifies the function of moisture content and temperature in materials. Physical and thermal characteristics of food products, for instance, the parameters of the moisture diffusion coefficient and activation energy, are needed for the ideal dryer design [4].

## 2. Materials and Methods

#### 2.1. Sample Preparation

#### 2.2. Dryer Equipment

#### 2.3. Experimental Procedure

_{0}and W

_{0}are initial humidity (% d.b.) and mass of fresh samples (kg), respectively. The rosemary samples were dried until the moisture content reached about 12% (% d.b.) based on fresh weight.

#### 2.4. Data Analysis

#### 2.4.1. Moisture Content Analysis

_{t}is the mass humidity (% d.b.), and M

_{e}is the equilibrium moisture. MC is the moisture content at t and t + dt. Due to the low value of M

_{e}compared to M

_{0}and M

_{t}, Equation (2) was simplified as MR = M

_{t}/M.

#### 2.4.2. Effective Moisture Diffusivity Coefficient (D_{eff})

_{eff}) was obtained from the slope (K) of the Ln(MR) diagram relative to time, as follows:

_{eff}is the defined effective diffusivity coefficient (m

^{2}/s) and L is the semi-thickness of each sample.

#### 2.4.3. Activation Energy

_{a}is activation energy (kJ/mol), T

_{abs}is the temperature inside the dry chamber (k), R

_{g}is the universal gas constant equal to 38.143 (kJ/mol.K), and D

_{0}is the Arrhenius pre-exponential factor (m

^{2}/s) with a constant value. T is also the absolute air temperature. To obtain E

_{a}, linear relation (8) was used:

_{eff}) versus 1/T

_{abs}, the slope of K

_{2}was obtained as below:

#### 2.4.4. Energy and Exergy Analysis

_{a,i}and h

_{a,o}are input and output air enthalpy of the dryer (J/kg), respectively; ${\stackrel{\u2022}{m}}_{PF}$ and ${\stackrel{\u2022}{m}}_{PD}$ are mass flow rates of fresh and dried products (kg/s), respectively; h

_{PF}and h

_{PD}are enthalpy of fresh input and dried products (kJ/kg), respectively; and ${\stackrel{\u2022}{Q}}_{defl}$ is the heat loss from the dryer body (kJ/s).

^{3}) and V

_{a}is the linear velocity of the input air flow to the dryer chamber (m/s). To calculate the dry air density of ρ

_{a}(kg/m

^{3}), Equation (14) was used [27]:

_{a}is air temperature (°C). The input and output air enthalpy of the drying chamber is calculated using the following equation [28]:

_{a}is the specific heat of the air at constant pressure (kJ/kg °C) and T

_{∞}is the temperature of the output air (°C), h

_{fg}is the latent heat of evaporation of water (kJ/kg), and w is the absolute humidity of the input or output air.

_{p}is the specific heat of the input or output product (kJ/kg °C) and T

_{p}is the temperature of the input or output product (°C). To specify the enthalpy of input or output air, Equation (18) is used:

_{ai}is the specific heat of the input air (kJ/kg °C); T

_{ai}and T

_{ao}, are the temperature of the input and output air (°C), respectively; U

_{def}is the thermal degradation coefficient of the dryer body (Kw/m

^{2}°C); A

_{def}is the contact surface with the dryer body (m

^{2}); and T

_{mvdef}is the average temperature at three points of the dryer body.

_{in}), exergy at the outlet of the drying chamber (Ex

_{out}), and exergy loss (Ex

_{loss}) were calculated:

_{eff}) is defined as the ratio of outflow exergy to input exergy to the dryer chamber, and calculated by applying Equation (26):

#### 2.4.5. Specific Energy Consumption

## 3. Results

#### 3.1. Moisture Content

#### 3.2. Drying Rate

#### 3.3. Determination of D_{eff}

_{eff}values for the drying of rosemary. D

_{eff}values range from 8

^{−10}to 12

^{−10}m

^{2}/s for foods and crops [30]. With increasing air velocity and temperature, effective moisture diffusivity coefficients increase. The maximum effective moisture diffusivity coefficient at 70 °C and an air velocity of 2 m/s was 1.57 × 10

^{−9}m

^{2}/s. In addition, the lowest value (4.8 × 10

^{−10}m

^{2}/s) was recorded at 40 °C and an air velocity of 1 m/s. D

_{eff}in the rosemary foliage occurred as a result of cell wall degradation caused by increased input air velocity and temperature. The range obtained for D

_{eff}has been confirmed by other researchers [25,27,31,32].

#### 3.4. Activation Energy

^{2}value of 0.994, whereas the lowest value of 16.9 kJ/mol occurred at 1.5 m/s, and the R

^{2}value was 0.998. Similar results have been reported for apple slices and Chilean berry [33,34].

#### 3.5. Energy Utilization Ratio (EUR)

#### 3.6. Energy Utilization (EU)

#### 3.7. Input Exergy, Output Exergy, and Exergy Loss

#### 3.8. Exergy Efficiency

#### 3.9. Exergetic Improvement Potential Rate (IP)

#### 3.10. Sustainability Index (SI)

#### 3.11. Specific Energy Consumption (SEC)

## 4. Discussion

_{eff}) values of rosemary samples varied between 4.8 × 10

^{−10}and 1.57 × 10

^{−9}m

^{2}/s at a temperature range of 40–70 °C using Fick’s diffusion model, and the activation energy changed from 16.9 to 25.3 kJ/mol. The lowest and highest specific energy consumptions were 24.854 and 64.836 MJ/kg, respectively. The EUR ranged from 0.246 to 0.502, and was higher at lower temperatures and air velocities. With increasing air velocity and temperature, EUR increased. The lowest and highest EU rates were 0.017 and 0.060 kJ/s. Increasing the temperature and air velocity of drying led to an increase in the rate of input exergy, output exergy, and exergy loss. The average exergy efficiency values ranged from 35.08% for the temperature of 40 °C and air velocity of 1 m/s, to 78.50% for the temperature of 70 °C and air velocity of 2 m/s. Finally, due to higher exergy efficiency, at lower velocities and temperatures, the sustainability index increased, leading to fewer environmental impacts. Hence, as a measure of the quality of energy, exergy analysis can be used to assess the loss of heat and reflect the thermodynamic values of the operation of an HSD. Thus, exergy analysis should be applied to the design of convective HSD systems with the largest possible thermodynamic efficiencies.

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Karami, H.; Rasekh, M.; Darvishi, Y.; Khaledi, R. Effect of Drying Temperature and Air Velocity on the Essential Oil Content of Mentha aquatica L. J. Essent. Oil-Bear. Plants
**2017**, 20, 1131–1136. [Google Scholar] [CrossRef] - de Macedo, L.M.; Santos, É.M.D.; Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B.; Mazzola, P.G. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and Its Topical Applications: A Review. Plants
**2020**, 9, 651. [Google Scholar] [CrossRef] [PubMed] - Mohammed, H.A.; Al-Omar, M.S.; Mohammed, S.A.A.; Aly, M.S.A.; Alsuqub, A.N.A.; Khan, R.A. Drying Induced Impact on Composition and Oil Quality of Rosemary Herb, Rosmarinus Officinalis Linn. Molecules
**2020**, 25, 2830. [Google Scholar] [CrossRef] - Kaveh, M.; Karami, H.; Jahanbakhshi, A. Investigation of mass transfer, thermodynamics, and greenhouse gases properties in pennyroyal drying. J. Food Process Eng.
**2020**, 43, e13446. [Google Scholar] [CrossRef] - Karami, H.; Lorestani, A.N.; Tahvilian, R. Assessment of kinetics, effective moisture diffusivity, specific energy consumption, and percentage of thyme oil extracted in a hybrid solar-electric dryer. J. Food Process Eng.
**2021**, 44, e13588. [Google Scholar] [CrossRef] - Karami, H.; Kaveh, M.; Mirzaee-Ghaleh, E.; Taghinezhad, E. Using PSO and GWO techniques for prediction some drying properties of tarragon (Artemisia dracunculus L.). J. Food Process Eng.
**2018**, 41, e12921. [Google Scholar] [CrossRef] - Karami, H.; Rasekh, M.; Darvishi, Y. Effect of temperature and air velocity on drying kinetics and organo essential oil extraction efficiency in a hybrid dryer. Innov. Food Technol.
**2017**, 5, 65–75. [Google Scholar] - Karami, H.; Rasekh, M. Kinetics mass transfer and modeling of tarragon drying (Artemisia dracunculus L.). Iran. J. Med. Arom. Plants Res.
**2018**, 34, 734–747. [Google Scholar] - Suherman, S.; Susanto, E.E.; Zardani, A.W.; Dewi, N.H.R.; Hadiyanto, H. Energy–exergy analysis and mathematical modeling of cassava starch drying using a hybrid solar dryer. Cogent Eng.
**2020**, 7, 1771819. [Google Scholar] [CrossRef] - Reyes, A.; Mahn, A.; Vásquez, F. Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Convers. Manag.
**2014**, 83, 241–248. [Google Scholar] [CrossRef] - Eltawil, M.A.; Azam, M.M.; Alghannam, A.O. Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (MenthaViridis). J. Clean. Prod.
**2018**, 181, 352–364. [Google Scholar] [CrossRef] - Amer, B.M.A.; Gottschalk, K.; Hossain, M.A. Integrated hybrid solar drying system and its drying kinetics of chamomile. Renew. Energy
**2018**, 121, 539–547. [Google Scholar] [CrossRef] - Bosomtwe, A.; Danso, J.K.; Osekre, E.A.; Opit, G.P.; Mbata, G.; Armstrong, P.; Arthur, F.H.; Campbell, J.; Manu, N.; McNeill, S.G.; et al. Effectiveness of the solar biomass hybrid dryer for drying and disinfestation of maize. J. Stored Prod. Res.
**2019**, 83, 66–72. [Google Scholar] [CrossRef] - Aghbashlo, M.; Kianmehr, M.H.; Arabhosseini, A. Energy and Exergy Analyses of Thin-Layer Drying of Potato Slices in a Semi-Industrial Continuous Band Dryer. Dry. Technol.
**2008**, 26, 1501–1508. [Google Scholar] [CrossRef] - Beigi, M.; Tohidi, M.; Torki-Harchegani, M. Exergetic analysis of deep-bed drying of rough rice in a convective dryer. Energy
**2017**, 140, 374–382. [Google Scholar] [CrossRef] - Liu, Z.-L.; Bai, J.-W.; Wang, S.-X.; Meng, J.-S.; Wang, H.; Yu, X.-L.; Gao, Z.-J.; Xiao, H.-W. Prediction of energy and exergy of mushroom slices drying in hot air impingement dryer by artificial neural network. Dry. Technol.
**2020**, 38, 1959–1970. [Google Scholar] [CrossRef] - Taskin, O.; Polat, A.; Etemoglu, A.B.; Izli, N. Energy and exergy analysis, drying kinetics, modeling, microstructure and thermal properties of convective-dried banana slices. J. Therm. Anal. Calorim.
**2021**. [Google Scholar] [CrossRef] - Taheri-Garavand, A.; Karimi, F.; Karimi, M.; Lotfi, V.; Khoobbakht, G. Hybrid response surface methodology–artificial neural network optimization of drying process of banana slices in a forced convective dryer. Food Sci. Technol. Int.
**2018**, 24, 277–291. [Google Scholar] [CrossRef] [PubMed] - Islam, M.A.; Mondal, M.H.T.; Akhtaruzzaman, M.; Sheikh, M.A.M.; Islam, M.M.; Haque, M.A.; Sarker, M.S.H. Energy, exergy, and milling performance of parboiled paddy: An industrial LSU dryer. Dry. Technol.
**2021**, 1–15. [Google Scholar] [CrossRef] - Li, B.; Li, C.; Huang, J.; Li, C. Exergoeconomic Analysis of Corn Drying in a Novel Industrial Drying System. Entropy
**2020**, 22, 689. [Google Scholar] [CrossRef] - Yu, X.-L.; Zielinska, M.; Ju, H.-Y.; Mujumdar, A.S.; Duan, X.; Gao, Z.-J.; Xiao, H.-W. Multistage relative humidity control strategy enhances energy and exergy efficiency of convective drying of carrot cubes. Int. J. Heat Mass Transf.
**2020**, 149, 119231. [Google Scholar] [CrossRef] - Castro, M.; Román, C.; Echegaray, M.; Mazza, G.; Rodriguez, R. Exergy Analyses of Onion Drying by Convection: Influence of Dryer Parameters on Performance. Entropy
**2018**, 20, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Karthikeyan, A.K.; Murugavelh, S. Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer. Renew. Energy
**2018**, 128, 305–312. [Google Scholar] [CrossRef] - Lakshmi, D.V.N.; Muthukumar, P.; Layek, A.; Nayak, P.K. Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage. Renew. Energy
**2018**, 120, 23–34. [Google Scholar] [CrossRef] - Tagnamas, Z.; Lamsyehe, H.; Moussaoui, H.; Bahammou, Y.; Kouhila, M.; Idlimam, A.; Lamharrar, A. Energy and exergy analyses of carob pulp drying system based on a solar collector. Renew. Energy
**2021**, 163, 495–503. [Google Scholar] [CrossRef] - Kaveh, M.; Abbaspour-Gilandeh, Y.; Chen, G. Drying kinetic, quality, energy and exergy performance of hot air-rotary drum drying of green peas using adaptive neuro-fuzzy inference system. Food Bioprod. Process.
**2020**, 124, 168–183. [Google Scholar] [CrossRef] - Vijayan, S.; Arjunan, T.V.; Kumar, A. Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices. Renew. Energy
**2020**, 146, 2210–2223. [Google Scholar] [CrossRef] - Suherman, S.; Hadiyanto, H.; Susanto, E.E.; Utami, I.A.P.; Ningrum, T. Hybrid solar dryer for sugar-palm vermicelli drying. J. Food Process Eng.
**2020**, 43, e13471. [Google Scholar] [CrossRef] - Aghbashlo, M.; Mobli, H.; Rafiee, S.; Madadlou, A. Energy and exergy analyses of the spray drying process of fish oil microencapsulation. Biosyst. Eng.
**2012**, 111, 229–241. [Google Scholar] [CrossRef] - Das, I.; Arora, A. Alternate microwave and convective hot air application for rapid mushroom drying. J. Food Eng.
**2018**, 223, 208–219. [Google Scholar] [CrossRef] - Taghinezhad, E.; Kaveh, M.; Jahanbakhshi, A.; Golpour, I. Use of artificial intelligence for the estimation of effective moisture diffusivity, specific energy consumption, color and shrinkage in quince drying. J. Food Process Eng.
**2020**, 43, e13358. [Google Scholar] [CrossRef] - Sehrawat, R.; Nema, P.K.; Kaur, B.P. Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam, vacuum and hot air drying methods. LWT
**2018**, 92, 548–555. [Google Scholar] [CrossRef] - Kian-Pour, N.; Karatas, S. Impact of different geometric shapes on drying kinetics and textural characteristics of apples at temperatures above 100 °C. Heat Mass Transf.
**2019**, 55, 3721–3732. [Google Scholar] [CrossRef] - Quispe-Fuentes, I.; Vega-Gálvez, A.; Vásquez, V.; Uribe, E.; Astudillo, S. Mathematical modeling and quality properties of a dehydrated native Chilean berry. J. Food Process Eng.
**2017**, 40, e12499. [Google Scholar] [CrossRef] - Kaveh, M.; Chayjan, R.A.; Golpour, I.; Poncet, S.; Seirafi, F.; Khezri, B. Evaluation of exergy performance and onion drying properties in a multi-stage semi-industrial continuous dryer: Artificial neural networks (ANNs) and ANFIS models. Food Bioprod. Process.
**2021**, 127, 58–76. [Google Scholar] [CrossRef] - Okunola, A.; Adekanye, T.; Idahosa, E. Energy and exergy analyses of okra drying process in a forced convection cabinet dryer. Res. Agric. Eng.
**2021**, 67, 8–16. [Google Scholar] [CrossRef] - Liu, Z.-L.; Zielinska, M.; Yang, X.-H.; Yu, X.-L.; Chen, C.; Wang, H.; Wang, J.; Pan, Z.; Xiao, H.-W. Moisturizing strategy for enhanced convective drying of mushroom slices. Renew. Energy
**2021**, 172, 728–739. [Google Scholar] [CrossRef] - Aviara, N.A.; Onuoha, L.N.; Falola, O.E.; Igbeka, J.C. Energy and exergy analyses of native cassava starch drying in a tray dryer. Energy
**2014**, 73, 809–817. [Google Scholar] [CrossRef] - Mokhtarian, M.; Tavakolipour, H.; Kalbasi-Ashtari, A. Energy and exergy analysis in solar drying of pistachio with air recycling system. Dry. Technol.
**2016**, 34, 1484–1500. [Google Scholar] [CrossRef] - Fudholi, A.; Sopian, K.; Yazdi, M.H.; Ruslan, M.H.; Gabbasa, M.; Kazem, H.A. Performance analysis of solar drying system for red chili. Sol. Energy
**2014**, 99, 47–54. [Google Scholar] [CrossRef] - Prommas, R.; Keangin, P.; Rattanadecho, P. Energy and exergy analyses in convective drying process of multi-layered porous packed bed. Int. Commun. Heat Mass Transf.
**2010**, 37, 1106–1114. [Google Scholar] [CrossRef] - Argo, B.D.; Ubaidillah, U. Thin-layer drying of cassava chips in multipurpose convective tray dryer: Energy and exergy analyses. J. Mech. Sci. Technol.
**2020**, 34, 435–442. [Google Scholar] [CrossRef] - Yogendrasasidhar, D.; Pydi Setty, Y. Drying kinetics, exergy and energy analyses of Kodo millet grains and Fenugreek seeds using wall heated fluidized bed dryer. Energy
**2018**, 151, 799–811. [Google Scholar] [CrossRef] - Ndukwu, M.C.; Bennamoun, L.; Abam, F.I.; Eke, A.B.; Ukoha, D. Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium. Renew. Energy
**2017**, 113, 1182–1192. [Google Scholar] [CrossRef] - Kavak Akpinar, E. The effects of some exergetic indicators on the performance of thin layer drying process of long green pepper in a solar dryer. Heat Mass Transf.
**2019**, 55, 299–308. [Google Scholar] [CrossRef] - Mugi, V.R.; Chandramohan, V.P. Energy and exergy analysis of forced and natural convection indirect solar dryers: Estimation of exergy inflow, outflow, losses, exergy efficiencies and sustainability indicators from drying experiments. J. Clean. Prod.
**2021**, 282, 124421. [Google Scholar] [CrossRef] - Erbay, Z.; Icier, F. Energy and exergy analyses on drying of olive leaves (olea europaea L.) In tray drier. J. Food Process Eng.
**2011**, 34, 2105–2123. [Google Scholar] [CrossRef] - Amjad, W.; Ali Gilani, G.; Munir, A.; Asghar, F.; Ali, A.; Waseem, M. Energetic and exergetic thermal analysis of an inline-airflow solar hybrid dryer. Appl. Therm. Eng.
**2020**, 166, 114632. [Google Scholar] [CrossRef] - Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Gródek-Szostak, Z.; Suder, M.; Kuboń, M.; Borkowski, T.; Malik, G. Solar Power: Stellar Profit or Astronomic Cost? A Case Study of Photovoltaic Installations under Poland’s National Prosumer Policy in 2016–2020. Energies
**2021**, 14, 4233. [Google Scholar] [CrossRef] - Kurpaska, S.; Knaga, J.; Latała, H.; Cupiał, M.; Konopacki, P.; Hołownicki, R. The Comparison of Different Types of Heat Accumulators and Benefits of Their Use in Horticulture. Sensors
**2020**, 20, 1417. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zadhossein, S.; Abbaspour-Gilandeh, Y.; Kaveh, M.; Szymanek, M.; Khalife, E.; D. Samuel, O.; Amiri, M.; Dziwulski, J. Exergy and Energy Analyses of Microwave Dryer for Cantaloupe Slice and Prediction of Thermodynamic Parameters Using ANN and ANFIS Algorithms. Energies
**2021**, 14, 4838. [Google Scholar] [CrossRef] - Kaveh, M.; Abbaspour-Gilandeh, Y.; Nowacka, M. Optimisation of microwave-rotary drying process and quality parameters of terebinth. Biosyst. Eng.
**2021**, 208, 113–130. [Google Scholar] [CrossRef]

Temperature (°C) | Air Velocity (m/s) | ||
---|---|---|---|

1 | 1.5 | 2 | |

40 | 4.8046 × 10^{−1}^{0} | 6.28 × 10^{−1}^{0} | 7.43347 × 10^{−1}^{0} |

50 | 8.01047 × 10^{−1}^{0} | 8.40453 × 10^{−1}^{0} | 8.71977 × 10^{−1}^{0} |

60 | 9.24047 × 10^{−1}^{0} | 1.02903 × 10^{−9} | 1.11235 × 10^{−9} |

70 | 1.17427 × 10^{−9} | 1.2846 × 10^{−9} | 1.56832 × 10^{−9} |

Temperature | EUR | EU | ||||
---|---|---|---|---|---|---|

1 m/s | 1.5 m/s | 2 m/s | 1 m/s | 1.5 m/s | 2 m/s | |

40 (°C) | 0.246 | 0.274 | 0.323 | 0.017 | 0.019 | 0.021 |

50 (°C) | 0.293 | 0.316 | 0.363 | 0.025 | 0.028 | 0.032 |

60 (°C) | 0.340 | 0.367 | 0.432 | 0.034 | 0.039 | 0.042 |

70 (°C) | 0.375 | 0.414 | 0.502 | 0.043 | 0.048 | 0.060 |

Temperature | Exergy Input | Exergy Output | Exergy Loss | ||||||
---|---|---|---|---|---|---|---|---|---|

1 m/s | 1.5 m/s | 2 m/s | 1 m/s | 1.5 m/s | 2 m/s | 1 m/s | 1.5 m/s | 2 m/s | |

40 (°C) | 0.014 | 0.016 | 0.021 | 0.005 | 0.007 | 0.011 | 0.009 | 0.010 | 0.010 |

50 (°C) | 0.035 | 0.041 | 0.052 | 0.019 | 0.024 | 0.032 | 0.017 | 0.017 | 0.020 |

60 (°C) | 0.071 | 0.077 | 0.087 | 0.049 | 0.054 | 0.063 | 0.022 | 0.023 | 0.024 |

70 (°C) | 0.105 | 0.118 | 0.129 | 0.079 | 0.091 | 0.101 | 0.026 | 0.027 | 0.028 |

**Table 4.**SEC (MJ/kg) for thin-layer drying of rosemary at different air velocities and temperatures.

Temperature (°C) | Air Velocity (m/s) | ||
---|---|---|---|

1 | 1.5 | 2 | |

40 | 64.836 | 59.649 | 55.350 |

50 | 56.381 | 48.374 | 44.986 |

60 | 40.034 | 36.136 | 31.316 |

70 | 32.310 | 29.558 | 24.854 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Karami, H.; Kaveh, M.; Golpour, I.; Khalife, E.; Rusinek, R.; Dobrzański, B., Jr.; Gancarz, M.
Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary (*Rosmarinus officinalis* L.) Leaves. *Energies* **2021**, *14*, 5835.
https://doi.org/10.3390/en14185835

**AMA Style**

Karami H, Kaveh M, Golpour I, Khalife E, Rusinek R, Dobrzański B Jr., Gancarz M.
Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary (*Rosmarinus officinalis* L.) Leaves. *Energies*. 2021; 14(18):5835.
https://doi.org/10.3390/en14185835

**Chicago/Turabian Style**

Karami, Hamed, Mohammad Kaveh, Iman Golpour, Esmail Khalife, Robert Rusinek, Bohdan Dobrzański, Jr., and Marek Gancarz.
2021. "Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary (*Rosmarinus officinalis* L.) Leaves" *Energies* 14, no. 18: 5835.
https://doi.org/10.3390/en14185835