The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study
Abstract
:1. Introduction
- reducing the demand for heat, cooling and electricity, which is influenced by the shape, structure and energy profile of the building and its technical equipment,
- using unconventional and renewable energy sources,
- increasing the efficiency of systems used to ensure climate comfort in the building,
- increasing the efficiency of energy conversion by household appliances,
- enabling bidirectional energy flow in any of its forms,
- taking maximum advantage of natural (passive) support strategies for heating, cooling and using natural light.
2. Materials and Methods
3. Applied Methodology and Results
3.1. STAGE 1—Creating the Input Database for a Specific Project
- (a)
- a building with a usable area of approx. 200 m2, inhabited by a family of three (2 adults and 1 child),
- (b)
- passive house standard—PH Plus, in accordance with Passive House Institute (PHI),
- (c)
- location and climate—the city of Warsaw, south-oriented building,
- (d)
- location in unprotected terrain—no natural shade,
- (e)
- simple architectural and spatial form,
- (f)
- standard manner and profile of use of a residential building,
- (g)
- strict requirements for climatic comfort—a building equipped with active heating, cooling, lighting and mechanical balanced ventilation systems with high-efficiency heat recovery (≥75%)
- (h)
- restrictions resulting from Polish regulations, in line with, e.g., the Regulation of the Minister of Infrastructure and Construction on technical conditions to be met by buildings and their location,
- (i)
- maximum integration with the external environment, e.g., by using natural resources,
- (j)
- building completion time—maximum 5 years,
- (k)
- maximum investment costs of PLN 1.5 million,
- (l)
- the range of values of characteristics (from minimum to maximum) that describe the decision criteria from the set of evaluation criteria and sub-criteria.
3.2. STAGE 2—Identification of Permissible and Acceptable Solutions for a Residential Building with a Positive Energy Balance
3.2.1. Variant No. 1
3.2.2. Variant No. 2
3.2.3. Variant No. 3
3.3. STAGE 3—Selection of a Set of Decision Criteria and Identification of the Relations between the Criteria
3.4. STAGE 4—Determination of the Profile of the Decision-Maker’s Preferences
3.5. STAGE 5—Choosing the Compromise Solution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kabak, M.; Köse, E.; Kırılmaz, O.; Burmaoglu, S. A fuzzy multi-criteria decision-making approach to assess building energy performance. Energy Build. 2014, 72, 382–389. [Google Scholar] [CrossRef]
- Hepbasli, A. Low exergy (LowEx) heating and cooling systems for sustainable buildings and societies. Renew. Sustain. Energy Rev. 2012, 16, 73–104. [Google Scholar] [CrossRef]
- Slonski, M.; Schrag, T. Linear Optimisation of a Settlement Towards the Energy-Plus House Standard. Energies 2019, 12, 210. [Google Scholar] [CrossRef] [Green Version]
- Ciancio, V.; Falasca, S.; Golasi, I.; de Wilde, P.; Coppi, M.; de Santoli, L.; Salata, F. Resilience of a Building to Future Climate Conditions in Three European Cities. Energies 2019, 12, 4506. [Google Scholar] [CrossRef] [Green Version]
- Rucińska, J.; Trząski, A. Measurements and Simulation Study of Daylight Availability and Its Impact on the Heating, Cooling and Lighting Energy Demand in an Educational Building. Energies 2020, 13, 2555. [Google Scholar] [CrossRef]
- Berouine, A.; Ouladsine, R.; Bakhouya, M.; Essaaidi, M. Towards a Real-Time Predictive Management Approach of Indoor Air Quality in Energy-Efficient Buildings. Energies 2020, 13, 3246. [Google Scholar] [CrossRef]
- Grygierek, K.; Ferdyn-Grygierek, J.; Gumińska, A.; Baran, Ł.; Barwa, M.; Czerw, K.; Gowik, P.; Makselan, K.; Potyka, K.; Psikuta, A. Energy and Environmental Analysis of Single-Family Houses Located in Poland. Energies 2020, 13, 2740. [Google Scholar] [CrossRef]
- Kampelis, N.; Sifakis, N.; Kolokotsa, D.; Gobakis, K.; Kalaitzakis, K.; Isidori, D.; Cristalli, C. HVAC Optimization Genetic Algorithm for Industrial Near-Zero-Energy Building Demand Response. Energies 2019, 12, 2177. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Tian, Z.; Chen, W.; Si, B.; Jin, X. A review on building energy efficient design optimization from the perspective of architects. Renew. Sustain. Energy Rev. 2016, 65, 872–884. [Google Scholar] [CrossRef]
- Wright, J.; Loosemore, H. The multi-criterion optimization of building thermal design and control. Building Simulation. In Proceedings of the Seventh International IBPSA Conference, Rio de Janeiro, Brazil, 13–15 August 2001; pp. 873–880. [Google Scholar]
- Caldas, L.; Norford, L.K. Genetic Algorithms for Optimization of Building Envelopes and the Design and Control of HVAC Systems. J. Sol. Energy Eng. 2003, 125, 343–351. [Google Scholar] [CrossRef]
- Dytczak, M. Wybrane Metody Rozwiązywania Wielokryterialnego Problemów Decyzyjnych w Budownictwie; Oficyna Wydaw Politech Opolskiej: Opole, Poland, 2010. [Google Scholar]
- Passive House Institute (PHI). Passive House Planning Package, Energy Balance and Passive House Design Tool for Quality Approved Passive Houses and EnerPHit Retrofits; Version 9; PHI: Darmstadt, Germany, 2015. [Google Scholar]
- Seyedmohammadreza, H.; Wahid, M.; Hamed, H.S. Assessing the Energy and Indoor Air Quality Performance for a Three-Story Building Using an Integrated Model, Part One: The Need for Integration. Energies 2019, 12, 4775. [Google Scholar]
- Wahid, F.; Fayaz, M.; Aljarbouh, A.; Mir, M.; Aamir, M. Imran Energy Consumption Optimization and User Comfort Maximization in Smart Buildings Using a Hybrid of the Firefly and Genetic Algorithms. Energies 2020, 13, 4363. [Google Scholar] [CrossRef]
- Radomski, B. The Methodology of Designing Residential Buildings with a Positive Energy Balance (Original Title: Metodyka Projektowania Budynków Mieszkalnych o Dodatnim Bilansie Energetycznym). Ph.D. Thesis, Poznań University of Technology, Faculty of Environmental and Power Engineering, Poznań, Poland, 2020. [Google Scholar]
- Radomski, B.; Mróz, T. The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach. Energies 2021, 14, 4715. [Google Scholar] [CrossRef]
- Available online: http://www.passiv.de/ (accessed on 7 March 2021).
- Passive House Institute (PHI). Criteria for the Passive House, EnerPHit and PHI Low Energy Building Standard; Version 9f; Passive Passive House Institute (PHI): Darmstadt, Germany, 2016. [Google Scholar]
- Radomski, B. Projektowanie instalacji sanitarnych w budynkach pasywnych—studium przypadku. Inżynier Budownictwa 2016, 9, 84–89. [Google Scholar]
- Radomski, B. Projektowanie w budynkach pasywnych instalacji ziębniczej, przygotowania ciepłej wody użytkowej i wentylacji mechanicznej nawiewno-wywiewnej. Inżynier Budownictwa 2016, 11, 113–117. [Google Scholar]
- Radomski, B.; Bandurski, K.; Mróz, T.M. Rola parametrów komfortu klimatycznego w budynkach pasywnych. Instal 2017, 10, 27–33. [Google Scholar]
- Firląg, S. Cost-Optimal Plus Energy Building in a Cold Climate. Energies 2019, 12, 3841. [Google Scholar] [CrossRef] [Green Version]
- Mróz, T.M.; Radomski, B. Aspekty energetyczne współczesnego środowiska zabudowanego. Przegląd Bud. 2018, 7–8, 102–104. [Google Scholar]
- Erhorn, H. The Age of Positive Energy Buildings Has Come; Franhofer Institute for Building Physics: Stuttgart, Germany, 2012; pp. 1433–1443. [Google Scholar]
No. | Parameter | Variant 1 | Variant 2 | Variant 3 | Unit |
---|---|---|---|---|---|
1 | Usable area with controlled temperature | 206.64 | 265.61 | 198.12 | m2 |
2 | Usable building volume with controlled temperature | 516.60 | 664.03 | 495.30 | m3 |
3 | Gross building volume | 1057.96 | 1121.95 | 1065.83 | m3 |
4 | Shape factor (A/V) | 0.607 | 0.679 | 0.623 | - |
5 | Building airtightness (n50) | 0.60 | 0.60 | 0.60 | - |
6 | Total building completion time | 3.083 | 3.167 | 2.917 | years |
7 | Total primary cost of investment (TCINV) | 1,087,500 | 1,446,750 | 1,005,750 | PLN |
8 | Building technology | Framing | Traditional | Framing | |
9 | Heat source and heating system | Air-to-water heat pump (SPLIT) central system with active heating ground floor- heating/ cooling foundation slab first floor- capillary heating/cooling mats (ceiling) | Glycol-water heat pump with a lower heat source in the form of a vertical exchanger (3 vertical tubes) central system with active heating ground floor–heating/ cooling foundation slab first floor–thermally active ceiling connected to central heating and cooling | Multi Split heating and cooling air-conditioning system with one outdoor unit and five indoor wall-mounted units local system with active heating peak heat source–direct electric floor-heating installation | - |
10 | Heat source and DHW preparation system | Air-to-water heat pump (SPLIT) central system with a 300l water tank and circulation | Glycol-water heat pump with a lower heat source in the form of a vertical exchanger (3 vertical tubes) central system with a 300l water tank and circulation | Air-to-water heat pump (DHW) central system with a 270l water tank and circulation, integrated with the mechanical ventilation system, from which it extracts heat from the exhaust air during the heating season, and from the supply air during the cooling season | - |
11 | Cooling source and cooling system | Air-to-water heat pump (SPLIT) central system with active cooling ground floor–heating/ cooling foundation slab first floor–capillary heating/cooling mats (ceiling) | Glycol-water heat pump with a lower heat source in the form of a vertical exchanger (3 vertical tubes) central system with passive cooling ground floor–heating/ cooling foundation slab first floor–thermally active ceiling connected to central heating and cooling | Multi Split heating and cooling air-conditioning system with one outdoor unit and five indoor wall-mounted units local system with active cooling source of waste cold from the DHW heat pump in the summer season during DHW preparation | - |
12 | Mechanical ventilation system | Mechanical balanced ventilation system with high-efficiency heat recovery of 89% with an electric preheater designed air-balance Vsup/Vexh = 280/280 m3/h | Mechanical balanced ventilation system with high-efficiency heat recovery of 87% integrated with the lower heat source of the heat pump through an air-to-water heat exchanger designed air-balance Vsup/Vexh = 400/400 m3/h | Mechanical balanced ventilation system with high-efficiency heat recovery of 87% integrated with the domestic hot water installation designed air-balance Vsup/Vexh = 300/300 m3/h | - |
13 | Photovoltaic installation | Photovoltaic installation with polycrystalline panels (39 units) with a total power of 9.75 kWp | Photovoltaic installation with polycrystalline panels (36 units) with a total power of 9.36 kWp | Photovoltaic installation with monocrystalline panels (33 units) with a total power of 9.735 kWp | - |
No. | Criterion Group | Group Symbol | Name of Criterion/Sub-Criterion of Evaluation | Symbol | Relation Weight |
---|---|---|---|---|---|
vj | |||||
1 | Technical criterion | cT | Shape factor (A/V) | cT A/V,i | 0.072 |
2 | Total building completion time (TBLD) | cT T,BLD,i | 0.027 | ||
3 | Difficulties in implementation (DIMP) | cT D,IMP,i | 0.027 | ||
4 | Total service life of the building and its technical installations (TLIFE) | cT T,LIFE,i | 0.024 | ||
5 | Total service life of renewable energy installation (TRES) | cT T,RES,i | 0.02 | ||
6 | Energy criterion | cEN | Total primary energy consumption (PETOTAL) | cEN PE,TOTAL,i | 0.036 |
7 | Total usable energy consumption (UETOTAL) | cEN UE,TOTAL,i | 0.047 | ||
8 | Total final energy consumption (FETOTAL) | cEN FE,TOTAL,i | 0.043 | ||
9 | Total generated usable renewable energy (UERES) | cEN UE,RES,i | 0.038 | ||
10 | Total transmitted final renewable energy (FERES) | cEN FE,RES,i | 0.033 | ||
11 | Exergy criterion | cEX | Sum of exergy losses of the building and its installations (BL) | cEXB,L,i | 0.035 |
12 | Sum of exergy generated by renewable energy sources (BGEN,RES) | cEX B,GEN,RES,i | 0.045 | ||
13 | Cumulative primary exergy consumption (BP*) | cEX B,P, i* | 0.026 | ||
14 | Utilization of the generated renewable energy (UTILRES) | cEX UTIL,RES, i | 0.045 | ||
15 | Use of natural heating, cooling and lighting strategies (NST) | cEX N,ST,i | 0.085 | ||
16 | Economic criterion | cEC | Internal return rate on renewable energy sources (IRRRES) | cEC IRR,RES,i | 0.027 |
17 | Total operational cost (TOC) | cEC TOC,i | 0.028 | ||
18 | Analysis of the building’s life-cycle cost (LCC) | cEC LCC,i | 0.027 | ||
19 | Total prime cost of the investment (TCINV) | cEC PC,INV,i | 0.039 | ||
20 | Dynamic generation cost of renewable energy installation (DGCRES) | cEC DGC, RES,i | 0.027 | ||
21 | Social criterion | cS | Compliance with the thermal comfort parameters (TC) | cS TC,i | 0.022 |
22 | Compliance with the air quality parameters (AQ) | cS AQ,i | 0.021 | ||
23 | Compliance with the acoustic comfort parameters (AC) | cS AC,i | 0.019 | ||
24 | Compliance with the visual comfort parameters (VC) | cS VC,i | 0.02 | ||
25 | Impact of the building and its installations on the surrounding environment (IENV) | cS I,ENV,i | 0.027 | ||
26 | Environmental criterion | cENV | Lice-cycle analysis of the building (LCA) | cENV LCA, i | 0.031 |
27 | Carbon dioxide emission (ECO2) | cENV E,CO2, i | 0.028 | ||
28 | Coherence of renewable energy sources (CRES) | cENV C,RES, i | 0.033 | ||
29 | Energy payback time of renewable energy sources (EPBT) | cENV EPBT, i | 0.025 | ||
30 | Greenhouse gas emission payback time (GPBT) | cENV GPBT i | 0.023 | ||
total | 1.000 |
Criterion Group | Name of Criterion | Current/Future User | Designer/Architect | ||
---|---|---|---|---|---|
Normalized within a Group | Raw Value | Normalized within a Group | Raw Value | ||
Main criterion | Technical criterion | 0.16319 | 0.081596 | 0.15689 | 0.078446 |
Energy criterion | 0.2572 | 0.128601 | 0.23904 | 0.119519 | |
Exergy criterion | 0.15568 | 0.077841 | 0.20019 | 0.100095 | |
Economic criterion | 0.25371 | 0.126856 | 0.20622 | 0.103111 | |
Social criterion | 0.07377 | 0.036887 | 0.08216 | 0.041082 | |
Environmental | 0.09644 | 0.048218 | 0.11549 | 0.057747 |
Criterion Group | Name of Evaluation Sub-Criteria | Normalized within a Group | Raw Value | Normalized as Part of a Whole | Normalized within a Group | Raw Value | Normalized as Part of a Whole |
---|---|---|---|---|---|---|---|
Technical criterion | Shape factor (A/V) | 0.20409 | 0.016653 | 0.033306 | 0.23081 | 0.018106 | 0.036212 |
Total building completion time (TBLD) | 0.12084 | 0.00986 | 0.01972 | 0.12097 | 0.00949 | 0.01898 | |
Difficulties in implementation (DIMP) | 0.09102 | 0.007427 | 0.014854 | 0.12777 | 0.010023 | 0.020046 | |
Total service life of the building and its technical installations (TLIFE) | 0.31788 | 0.025938 | 0.051876 | 0.27699 | 0.021729 | 0.043458 | |
Total service life of renewable energy installation (TRES) | 0.26617 | 0.021719 | 0.043438 | 0.24345 | 0.019098 | 0.038196 | |
Energy criterion | Total primary energy consumption (PETOTAL) | 0.09575 | 0.012314 | 0.024628 | 0.10447 | 0.012486 | 0.024972 |
Total usable energy consumption (UETOTAL) | 0.2206 | 0.028369 | 0.056738 | 0.27924 | 0.033375 | 0.06675 | |
Total final energy consumption (FETOTAL) | 0.18399 | 0.023661 | 0.047322 | 0.11814 | 0.01412 | 0.02824 | |
Total generated usable renewable energy (UERES) | 0.28605 | 0.036786 | 0.073572 | 0.26459 | 0.031623 | 0.063246 | |
Total transmitted final renewable energy (FERES) | 0.21361 | 0.02747 | 0.05494 | 0.23356 | 0.027915 | 0.05583 | |
Exergy criterion | Sum of exergy losses of the building and its installations (BL) | 0.2366 | 0.018417 | 0.036834 | 0.19771 | 0.01979 | 0.03958 |
Sum of exergy generated by renewable energy sources (BGEN,RES) | 0.14567 | 0.011339 | 0.022678 | 0.13389 | 0.013402 | 0.026804 | |
Cumulative primary exergy consumption (BP*) | 0.08809 | 0.006857 | 0.013714 | 0.07913 | 0.00792 | 0.01584 | |
Utilization of the generated renewable energy (UTILRES) | 0.22512 | 0.017523 | 0.035046 | 0.26111 | 0.026136 | 0.052272 | |
Use of natural heating, cooling and lighting strategies (NST) | 0.30452 | 0.023704 | 0.047408 | 0.32815 | 0.032846 | 0.065692 | |
Economic criterion | Internal return rate on renewable energy sources (IRRRES) | 0.14128 | 0.017922 | 0.035844 | 0.13385 | 0.013801 | 0.027602 |
Total operational cost (TOC) | 0.16498 | 0.020929 | 0.041858 | 0.14064 | 0.014501 | 0.029002 | |
Analysis of the building’s life-cycle cost (LCC) | 0.28315 | 0.03592 | 0.07184 | 0.2892 | 0.029819 | 0.059638 | |
Total prime cost of the investment (TCINV) | 0.28188 | 0.035758 | 0.071516 | 0.3156 | 0.032542 | 0.065084 | |
Dynamic generation cost of renewable energy installation (DGCRES) | 0.12871 | 0.016328 | 0.032656 | 0.12072 | 0.012447 | 0.024894 | |
Social criterion | Compliance with the thermal comfort parameters (TC) | 0.32063 | 0.011827 | 0.023654 | 0.29714 | 0.012207 | 0.024414 |
Compliance with the air quality parameters (AQ) | 0.33055 | 0.012193 | 0.024386 | 0.31883 | 0.013098 | 0.026196 | |
Compliance with the acoustic comfort parameters (AC) | 0.14745 | 0.005439 | 0.010878 | 0.14693 | 0.006036 | 0.012072 | |
Compliance with the visual comfort parameters (VC) | 0.10188 | 0.003758 | 0.007516 | 0.11545 | 0.004743 | 0.009486 | |
Impact of the building and its installations on the surrounding environment (IENV) | 0.09949 | 0.00367 | 0.00734 | 0.12166 | 0.004998 | 0.009996 | |
Environmental criterion | Lice-cycle analysis of the building (LCA) | 0.27052 | 0.013044 | 0.026088 | 0.2625 | 0.015159 | 0.030318 |
Carbon dioxide emission (ECO2) | 0.16085 | 0.007756 | 0.015512 | 0.19942 | 0.011516 | 0.023032 | |
Coherence of renewable energy sources (CRES) | 0.18655 | 0.008995 | 0.01799 | 0.16248 | 0.009383 | 0.018766 | |
Energy payback time of renewable energy sources (EPBT) | 0.23543 | 0.011352 | 0.022704 | 0.20525 | 0.011853 | 0.023706 | |
Greenhouse gas emission payback time (GPBT) | 0.14665 | 0.007071 | 0.014142 | 0.17034 | 0.009837 | 0.019674 |
No. | Criterion Group | Group Symbol | Name of Criterion/Sub-Criterion of Evaluation | Symbol | Preference Weight | ||
---|---|---|---|---|---|---|---|
wUSj | wD/Aj | wDECj | |||||
1 | Technical criterion | cT | Shape factor (A/V) | cT A/V,i | 0.033 | 0.036 | 0.026 |
2 | Total building completion time (TBLD) | cT T,BLD,i | 0.02 | 0.019 | 0.018 | ||
3 | Difficulties in implementation (DIMP) | cT D,IMP,i | 0.015 | 0.02 | 0.018 | ||
4 | Total service life of the building and its technical installations (TLIFE) | cT T,LIFE,i | 0.052 | 0.043 | 0.042 | ||
5 | Total service life of renewable energy installation (TRES) | cT T,RES,i | 0.043 | 0.038 | 0.038 | ||
6 | Energy criterion | cEN | Total primary energy consumption (PETOTAL) | cEN PE,TOTAL,i | 0.025 | 0.025 | 0.028 |
7 | Total usable energy consumption (UETOTAL) | cEN UE,TOTAL,i | 0.057 | 0.067 | 0.069 | ||
8 | Total final energy consumption (FETOTAL) | cEN FE,TOTAL,i | 0.047 | 0.028 | 0.035 | ||
9 | Total generated usable renewable energy (UERES) | cEN UE,RES,i | 0.074 | 0.063 | 0.057 | ||
10 | Total transmitted final renewable energy (FERES) | cEN FE,RES,i | 0.055 | 0.056 | 0.047 | ||
11 | Exergy criterion | cEX | Sum of exergy losses of the building and its installations (BL) | cEX,B,L,i | 0.037 | 0.04 | 0.04 |
12 | Sum of exergy generated by renewable energy sources (BGEN,RES) | cEX B,GEN,RES,i | 0.023 | 0.027 | 0.028 | ||
13 | Cumulative primary exergy consumption (BP*) | cEX B,P, i* | 0.014 | 0.016 | 0.017 | ||
14 | Utilization of the generated renewable energy (UTILRES) | cEX UTIL,RES, i | 0.035 | 0.052 | 0.042 | ||
15 | Use of natural heating, cooling and lighting strategies (NST) | cEX N,ST,i | 0.047 | 0.066 | 0.057 | ||
16 | Economic criterion | cEC | Internal return rate on renewable energy sources (IRRRES) | cEC IRR,RES,i | 0.036 | 0.028 | 0.035 |
17 | Total operational cost (TOC) | cEC TOC,i | 0.042 | 0.029 | 0.042 | ||
18 | Analysis of the building’s life-cycle cost (LCC) | cEC LCC,i | 0.072 | 0.06 | 0.069 | ||
19 | Total prime cost of the investment (TCINV) | cEC PC,INV,i | 0.072 | 0.065 | 0.079 | ||
20 | Dynamic generation cost of renewable energy installation (DGCRES) | cEC DGC, RES,i | 0.033 | 0.025 | 0.03 | ||
21 | Social criterion | cS | Compliance with the thermal comfort parameters (TC) | cS TC,i | 0.024 | 0.024 | 0.022 |
22 | Compliance with the air quality parameters (AQ) | cS AQ,i | 0.024 | 0.026 | 0.026 | ||
23 | Compliance with the acoustic comfort parameters (AC) | cS AC,i | 0.011 | 0.012 | 0.012 | ||
24 | Compliance with the visual comfort parameters (VC) | cS VC,i | 0.008 | 0.009 | 0.009 | ||
25 | Impact of the building and its installations on the surrounding environment (IENV) | cS I,ENV,i | 0.007 | 0.01 | 0.009 | ||
26 | Environmental criterion | cENV | Lice-cycle analysis of the building (LCA) | cENV LCA, i | 0.026 | 0.03 | 0.026 |
27 | Carbon dioxide emission (ECO2) | cENV E,CO2, i | 0.016 | 0.023 | 0.022 | ||
28 | Coherence of renewable energy sources (CRES) | cENV C,RES, i | 0.018 | 0.019 | 0.018 | ||
29 | Energy payback time of renewable energy sources (EPBT) | cENV EPBT, i | 0.023 | 0.024 | 0.021 | ||
30 | Greenhouse gas emission payback time (GPBT) | cENV GPBT i | 0.014 | 0.02 | 0.017 |
No. | Criterion Group | Group Symbol | Name of Criterion/Sub-Criterion of Evaluation | Symbol | Preference Weight | ||
---|---|---|---|---|---|---|---|
wUSj | wD/Aj | wDECj | |||||
1 | Technical criterion | cT | Shape factor (A/V) | cT A/V,i | 0.067 | 0.07 | 0.051 |
2 | Total building completion time (TBC) | cT T,BL:D,i | 0.015 | 0.014 | 0.013 | ||
3 | Difficulties in implementation (DIMP) | cT D,IMP,i | 0.011 | 0.014 | 0.013 | ||
4 | Total service life of the building and its technical installations (TLIFE) | cT T,LIFE,i | 0.034 | 0.027 | 0.027 | ||
5 | Total service life of renewable energy installation (TRES) | cT T,RES,i | 0.025 | 0.021 | 0.021 | ||
6 | Energy criterion | cEN | Total primary energy consumption (PETOTAL) | cEN PE,TOTAL,i | 0.024 | 0.024 | 0.028 |
7 | Total usable energy consumption (UETOTAL) | cEN UE,TOTAL,i | 0.075 | 0.085 | 0.089 | ||
8 | Total final energy consumption (FETOTAL) | cEN FE,TOTAL,i | 0.056 | 0.032 | 0.041 | ||
9 | Total generated usable renewable energy (UERES) | cEN UE,RES,i | 0.078 | 0.064 | 0.059 | ||
10 | Total transmitted final renewable energy (FERES) | cEN FE,RES,i | 0.051 | 0.05 | 0.043 | ||
11 | Exergy criterion | cEX | Sum of exergy losses of the building and its installations (EXL) | cEX,B,L,i | 0.036 | 0.037 | 0.038 |
12 | Sum of exergy generated by renewable energy sources (EXGEN,RES) | cEX B,GEN,RES,i | 0.028 | 0.032 | 0.034 | ||
13 | Cumulative primary exergy consumption(BP*) | cEX B,P, i* | 0.01 | 0.011 | 0.013 | ||
14 | Utilization of the generated renewable energy (UTILRES) | cEX UTIL,RES, i | 0.044 | 0.063 | 0.052 | ||
15 | Use of natural heating, cooling and lighting strategies (NST) | cEX N,ST,i | 0.112 | 0.149 | 0.132 | ||
16 | Economic criterion | cEC | Internal return rate on renewable energy sources (IRRRES) | cEC IRR,RES,i | 0.027 | 0.02 | 0.026 |
17 | Total operational cost (TOC) | cEC TOC,i | 0.032 | 0.021 | 0.032 | ||
18 | Analysis of the building’s life-cycle cost (LCC) | cEC LCC,i | 0.054 | 0.043 | 0.051 | ||
19 | Total prime cost of the investment (TCINV) | cEC PC,INV,i | 0.078 | 0.069 | 0.085 | ||
20 | Dynamic generation cost of renewable energy installation (DGCRES) | cEC DGC, RES,i | 0.024 | 0.018 | 0.022 | ||
21 | Social criterion | cS | Compliance with the thermal comfort parameters (TC) | cS TC,i | 0.014 | 0.014 | 0.013 |
22 | Compliance with the air quality parameters (AQ) | cS AQ,i | 0.014 | 0.015 | 0.015 | ||
23 | Compliance with the acoustic comfort parameters (AC) | cS AC,i | 0.006 | 0.006 | 0.006 | ||
24 | Compliance with the visual comfort parameters (VC) | cS VC,i | 0.004 | 0.005 | 0.005 | ||
25 | Impact of the building and its installations on the surrounding environment (IENV) | cS I,ENV,i | 0.006 | 0.007 | 0.007 | ||
26 | Environmental criterion | cENV | Lice-cycle analysis of the building (LCA) | cENV LCA, i | 0.023 | 0.025 | 0.022 |
27 | Carbon dioxide emission (ECO2) | cENV E,CO2, i | 0.012 | 0.017 | 0.017 | ||
28 | Coherence of renewable energy sources (CRES) | cENV C,RES, i | 0.016 | 0.016 | 0.016 | ||
29 | Energy payback time of renewable energy sources (EPBT) | cENV EPBT, i | 0.016 | 0.016 | 0.014 | ||
30 | Greenhouse gas emission payback time (GPBT) | cENV GPBT i | 0.009 | 0.012 | 0.011 | ||
total | 1.000 | 1.000 | 1.000 |
No. | Criterion Group | Criterion Symbol | Preference | Variant 1 | Variant 2 | Variant 3 | Unit |
---|---|---|---|---|---|---|---|
1 | Technical criterion | cT A/V,i | decreasing | 0.61 | 0.68 | 0.62 | m2/m3 |
2 | cT T,BLD,i | decreasing | 3.08 | 3.17 | 2.92 | years | |
3 | cT D,IMP,i | decreasing | 30 | 29 | 32 | pts | |
4 | cT T,LIFE,i | increasing | 44 | 69 | 43 | - | |
5 | cT T,RES,i | increasing | 20 | 25 | 17.5 | - | |
6 | Energy criterion | cEN PE,TOTAL,i | decreasing | 64.55 | 36.62 | 73.57 | kWh/(m2 year) |
7 | cEN UE,TOTAL,i | decreasing | 39.61 | 28.82 | 38.3 | kWh/(m2 year) | |
8 | cEN FE,TOTAL,i | decreasing | 26.9 | 15.26 | 30.65 | kWh/(m2 year) | |
9 | cEN UE,RES,i | increasing | 96.96 | 91.4 | 92.96 | kWh/(m2 BUILD year) | |
10 | cEN FE,RES,i | increasing | 27.67 | 33.21 | 24.79 | kWh/(m2 BUILD year) | |
11 | Exergy criterion | cEX,,B,L,i | decreasing | 2.99 | 2.35 | 4.88 | kW |
12 | cEX B,GEN,RES,i | increasing | 7.12 | 7.11 | 6.9 | kW | |
13 | cEX B,P, i* | decreasing | 23,776.10 | 17,334.98 | 25,979.93 | kWh/a | |
14 | cEX UTIL,RES, i | decreasing | 1.77 | 2.34 | 1.61 | - | |
15 | cEX N,ST,i | decreasing | 12 | 14 | 12 | pts | |
16 | Economic criterion | cEC IRR,RES,i | increasing | 10.18 | 10.13 | 9.47 | % |
17 | cEC TOC,i | decreasing | 157,910.45 | 165,899.86 | 174,917.43 | PLN | |
18 | cEC LCC,i | decreasing | 120.36 | 15.11 | 212.03 | PLN/m2 | |
19 | cEC PC,INV,i | decreasing | 1,087,500.00 | 1,446,750.00 | 1,005,750.00 | PLN | |
20 | cEC DGC, RES,i | decreasing | 0.33 | 0.03 | 0.65 | PLN/[kWh/(m2 year)] | |
21 | Social criterion | cS TC,i | increasing | 4.69 | 5 | 3.24 | pts |
22 | cS AQ,i | increasing | 4.68 | 5 | 4.39 | pts | |
23 | cS AC,i | increasing | 4.34 | 5 | 3.69 | pts | |
24 | cS VC,i | increasing | 5 | 4.45 | 3.45 | pts | |
25 | cS I,ENV,i | increasing | 7 | 5 | 7 | pts | |
26 | Environmental criterion | cENV LCA, i | decreasing | 51.3 | 60.62 | 60.06 | Pt/m2 |
27 | cENV E,CO2, i | decreasing | 214.64 | 121.75 | 244.62 | kgCO2/m2 | |
28 | cENV C,RES, i | increasing | 8 | 14 | 9 | pts | |
29 | cENV EPBT, i | decreasing | 7.1 | 6.78 | 9.49 | years | |
30 | cENV GPBT i | decreasing | 7.1 | 6.78 | 9.49 | years |
No. | Criterion Group | Criterion Symbol | Preference | Max | Min | Unit |
---|---|---|---|---|---|---|
1 | Technical criterion | cT A/V,i | decreasing | 1 | 0.5 | - |
2 | cT T,BLD,i | decreasing | 5 | 1 | - | |
3 | cT D,IMP,i | decreasing | 50 | 6 | - | |
4 | cT T,LIFE,i | increasing | 100 | 25 | - | |
5 | cT T,RES,i | increasing | 25 | 15 | - | |
6 | Energy criterion | cEN PE,TOTAL,i | decreasing | 100 | 10 | - |
7 | cEN UE,TOTAL,i | decreasing | 50 | 10 | - | |
8 | cEN FE,TOTAL,i | decreasing | 50 | 10 | - | |
9 | cEN UE,RES,i | increasing | 150 | 0 | - | |
10 | cEN FE,RES,i | increasing | 50 | 0 | - | |
11 | Exergy criterion | cEX,B,L,i | decreasing | 5 | 1 | - |
12 | cEX B,GEN,RES,i | increasing | 10 | 0 | - | |
13 | cEX, B,P, i* | decreasing | 30,000.00 | 10,000.00 | - | |
14 | cEX UTIL,RES, i | increasing | 3 | 1 | - | |
15 | cEX N,ST,i | increasing | 15 | 3 | - | |
16 | Economic criterion | cEC IRR,RES,i | increasing | 20 | 5 | - |
17 | cEC TOC,i | decreasing | 200,000.00 | 50,000.00 | - | |
18 | cEC LCC,i | decreasing | 250 | 10 | - | |
19 | cEC PC,INV,i | decreasing | 1,500,000.00 | 500,000.00 | - | |
20 | cEC DGC, RES,i | decreasing | 1 | 0.01 | - | |
21 | Social criterion | cS TC,i | increasing | 5 | 3 | - |
22 | cS AQ,i | increasing | 5 | 3 | - | |
23 | cS AC,i | increasing | 5 | 3 | - | |
24 | cS VC,i | increasing | 5 | 3 | - | |
25 | cS I,ENV,i | decreasing | 9 | 3 | - | |
26 | Environmental criterion | cENV LCA, i | decreasing | 100 | 50 | - |
27 | cENV E,CO2, i | decreasing | 300 | 100 | - | |
28 | cENV C,RES, i | increasing | 15 | 3 | - | |
29 | cENV EPBT, i | decreasing | 10 | 5 | - | |
30 | cENV GPBT i | decreasing | 10 | 5 | - |
No. | Criterion Group | Criterion Symbol | Preference | Variant 1 | Variant 2 | Variant 3 | Unit |
---|---|---|---|---|---|---|---|
1 | Technical criterion | cT A/V,i | decreasing | 0.82 | 0.74 | 0.8 | - |
2 | cT T,BLD,i | decreasing | 0.32 | 0.32 | 0.34 | - | |
3 | cT D,IMP,i | decreasing | 0.2 | 0.21 | 0.19 | - | |
4 | cT T,LIFE,i | increasing | 0.44 | 0.69 | 0.43 | - | |
5 | cT T,RES,i | increasing | 0.8 | 1 | 0.7 | - | |
6 | Energy criterion | cEN PE,TOTAL,i | decreasing | 0.15 | 0.27 | 0.14 | - |
7 | cEN UE,TOTAL,i | decreasing | 0.25 | 0.35 | 0.26 | - | |
8 | cEN FE,TOTAL,i | decreasing | 0.37 | 0.66 | 0.33 | - | |
9 | cEN UE,RES,i | increasing | 0.65 | 0.61 | 0.62 | - | |
10 | cEN FE,RES,i | increasing | 0.55 | 0.66 | 0.5 | - | |
11 | Exergy criterion | cEX,B,L,i | decreasing | 0.33 | 0.43 | 0.2 | - |
12 | cEX B,GEN,RES,i | increasing | 0.71 | 0.71 | 0.69 | - | |
13 | cEX B,P, i* | decreasing | 0.42 | 0.58 | 0.38 | - | |
14 | cEX UTIL,RES, i | increasing | 0.59 | 0.78 | 0.54 | - | |
15 | cEX N,ST,i | increasing | 0.8 | 0.93 | 0.8 | - | |
16 | Economic criterion | cEC IRR,RES,i | increasing | 0.51 | 0.51 | 0.47 | - |
17 | cEC TOC,i | decreasing | 0.32 | 0.3 | 0.29 | - | |
18 | cEC LCC,i | decreasing | 0.08 | 0.66 | 0.05 | - | |
19 | cEC PC,INV,i | decreasing | 0.46 | 0.35 | 0.5 | - | |
20 | cEC DGC, RES,i | decreasing | 0.03 | 0.29 | 0.02 | - | |
21 | Social criterion | cS TC,i | increasing | 0.94 | 1 | 0.65 | - |
22 | cS AQ,i | increasing | 0.94 | 1 | 0.88 | - | |
23 | cS AC,i | increasing | 0.87 | 1 | 0.74 | - | |
24 | cS VC,i | increasing | 1 | 0.89 | 0.69 | - | |
25 | cS I,ENV,i | decreasing | 0.43 | 0.6 | 0.43 | - | |
26 | Environmental criterion | cENV LCA, i | decreasing | 0.97 | 0.82 | 0.83 | - |
27 | cENV E,CO2, i | decreasing | 0.47 | 0.82 | 0.41 | - | |
28 | cENV C,RES, i | increasing | 0.53 | 0.93 | 0.6 | - | |
29 | cENV EPBT, i | decreasing | 0.7 | 0.74 | 0.53 | - | |
30 | cENV GPBT i | decreasing | 0.7 | 0.74 | 0.53 | - |
No. | Criterion Group | Criterion Symbol | Adjusted Evaluations—Decision-Maker Group | Decision-Maker Group | ||||
---|---|---|---|---|---|---|---|---|
Variant 1 | Variant 2 | Variant 3 | Unit | Positive Ideal | Negative Ideal | |||
1 | Technical criterion | cT A/V,i | 0.042 | 0.038 | 0.041 | - | 0.042 | 0.038 |
2 | cT T,BLD,i | 0.004 | 0.004 | 0.005 | - | 0.005 | 0.004 | |
3 | cT D,IMP,i | 0.003 | 0.003 | 0.003 | - | 0.003 | 0.003 | |
4 | cT T,LIFE,i | 0.012 | 0.019 | 0.012 | - | 0.019 | 0.012 | |
5 | cT T,RES,i | 0.017 | 0.021 | 0.015 | - | 0.021 | 0.015 | |
6 | Energy criterion | cEN PE,TOTAL,i | 0.004 | 0.008 | 0.004 | - | 0.008 | 0.004 |
7 | cEN UE,TOTAL,i | 0.023 | 0.031 | 0.023 | - | 0.031 | 0.023 | |
8 | cEN FE,TOTAL,i | 0.015 | 0.027 | 0.013 | - | 0.027 | 0.013 | |
9 | cEN UE,RES,i | 0.038 | 0.036 | 0.037 | - | 0.038 | 0.036 | |
10 | cEN FE,RES,i | 0.024 | 0.029 | 0.021 | - | 0.029 | 0.021 | |
11 | Exergy criterion | cEX,B,L,i | 0.013 | 0.016 | 0.008 | - | 0.016 | 0.008 |
12 | cEX B,GEN,RES,i | 0.024 | 0.024 | 0.024 | - | 0.024 | 0.024 | |
13 | cEX B,P, i* | 0.005 | 0.007 | 0.005 | - | 0.007 | 0.005 | |
14 | cEX UTIL,RES, i | 0.031 | 0.041 | 0.028 | - | 0.041 | 0.028 | |
15 | cEX N,ST,i | 0.106 | 0.124 | 0.106 | - | 0.124 | 0.106 | |
16 | Economic criterion | cEC IRR,RES,i | 0.013 | 0.013 | 0.012 | - | 0.013 | 0.012 |
17 | cEC TOC,i | 0.01 | 0.01 | 0.009 | - | 0.01 | 0.009 | |
18 | cEC LCC,i | 0.004 | 0.034 | 0.002 | - | 0.034 | 0.002 | |
19 | cEC PC,INV,i | 0.039 | 0.03 | 0.043 | - | 0.043 | 0.03 | |
20 | cEC DGC, RES,i | 0.001 | 0.006 | 0 | - | 0.006 | 0 | |
21 | Social criterion | cS TC,i | 0.013 | 0.013 | 0.009 | - | 0.013 | 0.009 |
22 | cS AQ,i | 0.014 | 0.015 | 0.013 | - | 0.015 | 0.013 | |
23 | cS AC,i | 0.006 | 0.006 | 0.005 | - | 0.006 | 0.005 | |
24 | cS VC,i | 0.005 | 0.004 | 0.003 | - | 0.005 | 0.003 | |
25 | cS I,ENV,i | 0.003 | 0.004 | 0.003 | - | 0.004 | 0.003 | |
26 | Environmental criterion | cENV LCA, i | 0.022 | 0.018 | 0.018 | - | 0.022 | 0.018 |
27 | cENV E,CO2, i | 0.008 | 0.014 | 0.007 | - | 0.014 | 0.007 | |
28 | cENV C,RES, i | 0.009 | 0.015 | 0.01 | - | 0.015 | 0.009 | |
29 | cENV EPBT, i | 0.01 | 0.011 | 0.008 | - | 0.011 | 0.008 | |
30 | cENV GPBT i | 0.007 | 0.008 | 0.006 | - | 0.008 | 0.006 | |
total | 0.525 | 0.629 | 0.492 | 0.653 | 0.472 |
No. | Criterion Group | Criterion Symbol | Adjusted Evaluations—User Group | User Group | ||||
---|---|---|---|---|---|---|---|---|
Variant 1 | Variant 2 | Variant 3 | Unit | Positive Ideal | Negative Ideal | |||
1 | Technical criterion | cT A/V,i | 0.055 | 0.049 | 0.053 | - | 0.055 | 0.049 |
2 | cT T,BLD,i | 0.005 | 0.005 | 0.005 | - | 0.005 | 0.005 | |
3 | cT D,IMP,i | 0.002 | 0.002 | 0.002 | - | 0.002 | 0.002 | |
4 | cT T,LIFE,i | 0.015 | 0.023 | 0.015 | - | 0.023 | 0.015 | |
5 | cT T,RES,i | 0.02 | 0.025 | 0.017 | - | 0.025 | 0.017 | |
6 | Energy criterion | cEN PE,TOTAL,i | 0.004 | 0.007 | 0.003 | - | 0.007 | 0.003 |
7 | cEN UE,TOTAL,i | 0.019 | 0.026 | 0.02 | - | 0.026 | 0.019 | |
8 | cEN FE,TOTAL,i | 0.021 | 0.037 | 0.018 | - | 0.037 | 0.018 | |
9 | cEN UE,RES,i | 0.05 | 0.047 | 0.048 | - | 0.05 | 0.047 | |
10 | cEN FE,RES,i | 0.028 | 0.034 | 0.025 | - | 0.034 | 0.025 | |
11 | Exergy criterion | cEX,BL,i | 0.012 | 0.015 | 0.007 | - | 0.015 | 0.007 |
12 | cEX B,GEN,RES,i | 0.02 | 0.02 | 0.02 | - | 0.02 | 0.02 | |
13 | cEX B,P, i* | 0.004 | 0.006 | 0.004 | - | 0.006 | 0.004 | |
14 | cEX UTIL,RES, i | 0.026 | 0.034 | 0.024 | - | 0.034 | 0.024 | |
15 | cEX N,ST,i | 0.089 | 0.104 | 0.089 | - | 0.104 | 0.089 | |
16 | Economic criterion | cEC IRR,RES,i | 0.014 | 0.014 | 0.013 | - | 0.014 | 0.013 |
17 | cEC TOC,i | 0.01 | 0.01 | 0.009 | - | 0.01 | 0.009 | |
18 | cEC LCC,i | 0.004 | 0.036 | 0.003 | - | 0.036 | 0.003 | |
19 | cEC PC,INV,i | 0.036 | 0.027 | 0.039 | - | 0.039 | 0.027 | |
20 | cEC DGC, RES,i | 0.001 | 0.007 | 0 | - | 0.007 | 0 | |
21 | Social criterion | cS TC,i | 0.013 | 0.014 | 0.009 | - | 0.014 | 0.009 |
22 | cS AQ,i | 0.013 | 0.014 | 0.012 | - | 0.014 | 0.012 | |
23 | cS AC,i | 0.005 | 0.006 | 0.004 | - | 0.006 | 0.004 | |
24 | cS VC,i | 0.004 | 0.004 | 0.003 | - | 0.004 | 0.003 | |
25 | cS I,ENV,i | 0.002 | 0.003 | 0.002 | - | 0.003 | 0.002 | |
26 | Environmental criterion | cENV LCA, i | 0.022 | 0.019 | 0.019 | - | 0.022 | 0.019 |
27 | cENV E,CO2, i | 0.006 | 0.01 | 0.005 | - | 0.01 | 0.005 | |
28 | cENV C,RES, i | 0.009 | 0.015 | 0.01 | - | 0.015 | 0.009 | |
29 | cENV EPBT, i | 0.011 | 0.012 | 0.008 | - | 0.012 | 0.008 | |
30 | cENV GPBT i | 0.006 | 0.007 | 0.005 | - | 0.007 | 0.005 | |
total | 0.527 | 0.631 | 0.492 | 0.656 | 0.473 |
No. | Criterion Group | Criterion Symbol | Adjusted Evaluations—Designer/Architect Group | Designer/Architect Group | ||||
---|---|---|---|---|---|---|---|---|
Variant 1 | Variant 2 | Variant 3 | Unit | Positive Ideal | Negative Ideal | |||
1 | Technical criterion | cT A/V,i | 0.057 | 0.051 | 0.056 | - | 0.057 | 0.051 |
2 | cT T,BLD,i | 0.005 | 0.004 | 0.005 | - | 0.005 | 0.004 | |
3 | cT D,IMP,i | 0.003 | 0.003 | 0.003 | - | 0.003 | 0.003 | |
4 | cT T,LIFE,i | 0.012 | 0.019 | 0.012 | - | 0.019 | 0.012 | |
5 | cT T,RES,i | 0.017 | 0.021 | 0.015 | - | 0.021 | 0.015 | |
6 | Energy criterion | cEN PE,TOTAL,i | 0.004 | 0.007 | 0.003 | - | 0.007 | 0.003 |
7 | cEN UE,TOTAL,i | 0.021 | 0.029 | 0.022 | - | 0.029 | 0.021 | |
8 | cEN FE,TOTAL,i | 0.012 | 0.021 | 0.011 | - | 0.021 | 0.011 | |
9 | cEN UE,RES,i | 0.042 | 0.039 | 0.04 | - | 0.042 | 0.039 | |
10 | cEN FE,RES,i | 0.028 | 0.033 | 0.025 | - | 0.033 | 0.025 | |
11 | Exergy criterion | cEX,B,L,i | 0.013 | 0.016 | 0.008 | - | 0.016 | 0.008 |
12 | cEX B,GEN,RES,i | 0.023 | 0.023 | 0.022 | - | 0.023 | 0.022 | |
13 | cEX B,P, i* | 0.005 | 0.006 | 0.004 | - | 0.006 | 0.004 | |
14 | cEX UTIL,RES, i | 0.037 | 0.049 | 0.034 | - | 0.049 | 0.034 | |
15 | cEX N,ST,i | 0.119 | 0.139 | 0.119 | - | 0.139 | 0.119 | |
16 | Economic criterion | cEC IRR,RES,i | 0.01 | 0.01 | 0.009 | - | 0.01 | 0.009 |
17 | cEC TOC,i | 0.007 | 0.006 | 0.006 | - | 0.007 | 0.006 | |
18 | cEC LCC,i | 0.004 | 0.029 | 0.002 | - | 0.029 | 0.002 | |
19 | cEC PC,INV,i | 0.032 | 0.024 | 0.034 | - | 0.034 | 0.024 | |
20 | cEC DGC, RES,i | 0.001 | 0.005 | 0 | - | 0.005 | 0 | |
21 | Social criterion | cS TC,i | 0.013 | 0.014 | 0.009 | - | 0.014 | 0.009 |
22 | cS AQ,i | 0.014 | 0.015 | 0.013 | - | 0.015 | 0.013 | |
23 | cS AC,i | 0.005 | 0.006 | 0.005 | - | 0.006 | 0.005 | |
24 | cS VC,i | 0.005 | 0.004 | 0.003 | - | 0.005 | 0.003 | |
25 | cS I,ENV,i | 0.003 | 0.004 | 0.003 | - | 0.004 | 0.003 | |
26 | Environmental criterion | cENV LCA, i | 0.025 | 0.021 | 0.021 | - | 0.025 | 0.021 |
27 | cENV E,CO2, i | 0.008 | 0.014 | 0.007 | - | 0.014 | 0.007 | |
28 | cENV C,RES, i | 0.009 | 0.015 | 0.01 | - | 0.015 | 0.009 | |
29 | cENV EPBT, i | 0.011 | 0.012 | 0.009 | - | 0.012 | 0.009 | |
30 | cENV GPBT i | 0.009 | 0.009 | 0.006 | - | 0.009 | 0.006 | |
total | 0.551 | 0.651 | 0.516 | 0.675 | 0.498 |
Decision-Maker Group | ||||||
---|---|---|---|---|---|---|
No. | Variant | Positive-Ideal Solution | Negative-Ideal Solution | Distance di+ | Distance di− | Ranking Index Ri |
1 | Variant 1 | 0.653 | 0.472 | 0.042 | 0.015 | 0.259 |
2 | Variant 2 | 0.014 | 0.046 | 0.764 | ||
3 | Variant 3 | 0.046 | 0.013 | 0.226 | ||
User Group | ||||||
No. | Variant | Positive-Ideal Solution | Negative-Ideal Solution | Distance di+ | Distance di− | Ranking Index Ri |
1 | Variant 1 | 0.656 | 0.473 | 0.043 | 0.015 | 0.258 |
2 | Variant 2 | 0.014 | 0.048 | 0.773 | ||
3 | Variant 3 | 0.048 | 0.013 | 0.212 | ||
Designer/Architect | ||||||
No. | Variant | Positive-Ideal Solution | Negative-Ideal Solution | Distance di+ | Distance di− | Ranking Index Ri |
1 | Variant 1 | 0.675 | 0.498 | 0.039 | 0.014 | 0.268 |
2 | Variant 2 | 0.013 | 0.044 | 0.773 | ||
3 | Variant 3 | 0.044 | 0.011 | 0.208 |
No. | Variant | Ranking Index Ri | ||
---|---|---|---|---|
Decision-Maker Group | User Group | Designer/Architect Group | ||
1 | Variant 2 | 0.764 | 0.773 | 0.773 |
2 | Variant 1 | 0.259 | 0.258 | 0.268 |
3 | Variant 3 | 0.226 | 0.212 | 0.208 |
No. | Variant | Ranking Index—Normalized | ||
---|---|---|---|---|
Decision-Maker Group | User Group | Designer/Architect Group | ||
1 | Variant 2 | 1.00 | 1.00 | 1.00 |
2 | Variant 1 | 0.34 | 0.333 | 0.347 |
3 | Variant 3 | 0.296 | 0.274 | 0.269 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radomski, B.; Mróz, T. The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study. Energies 2021, 14, 5162. https://doi.org/10.3390/en14165162
Radomski B, Mróz T. The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study. Energies. 2021; 14(16):5162. https://doi.org/10.3390/en14165162
Chicago/Turabian StyleRadomski, Bartosz, and Tomasz Mróz. 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study" Energies 14, no. 16: 5162. https://doi.org/10.3390/en14165162
APA StyleRadomski, B., & Mróz, T. (2021). The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study. Energies, 14(16), 5162. https://doi.org/10.3390/en14165162