Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy
Abstract
:1. Introduction
2. Practices in India
3. Effects of Stubble Burning
3.1. Environmental Effects
3.1.1. Air Pollution
3.1.2. Soil Fertility
4. Alternative Methods to Open Burning
4.1. In Situ Incorporation
4.2. Mulching
4.3. Composting
4.4. Happy Seeder Machines
4.5. Bioenergy
4.5.1. Case Study of Generation of Electricity from Agricultural Residues
4.5.2. Shortcomings and Ways to Overcome Them
5. Government Support and Policies
5.1. Steps Were Taken by the Government
5.2. Potential Future Strategies
- (1)
- Providing farmers with incentives not to burn crop residue outdoors.
- (2)
- Facilitation of maximum land cover using agricultural conservation practices.
- (3)
- Promoting the sustainable, environmentally friendly, and cost-effective use of surplus crop residues for generating bioenergy in power plants.
- (4)
- Crop residues should be classed as recycled fertilizers, and their use as fertilizers or amendments should receive government support.
- (5)
- Increasing subsidy rates for farmers who retain and utilize their crop residues.
- (6)
- There should not be free power as the same policy has resulted in the installation of high-powered tube wells that draw water from deep within the earth.
- (7)
- Promoting in situ management of crop residues by fast decay by chemical or biological means and mulching by mechanical means.
- (8)
- Promoting the use of machines such as double disks, zero tillage and happy seeders.
- (9)
- Valorization of crop residues for useful products, for example, compost, organic manure and biochar as a renewable fuel for power generation or as a soil amendment to improve soil health and fertility.
- (10)
- Increasing the awareness of farmers on the serious impacts of the open field burning practice.
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Paul, J.; Meinrat, O. Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science 1990, 250, 1669–1678. [Google Scholar]
- Venkatramanan, V.; Shah, S.; Rai, A.K.; Prasad, R. Nexus between crop residue burning, bioeconomy and sustainable development goals over north-western India. Front. Energy Res. 2021, 26. [Google Scholar] [CrossRef]
- Badarinath, K.V.S.; Chand, T.R.K.; Prasad, V.K. Agriculture crop residue burning in the Indo-Gangetic Plains—A study using IRS-P6 AWiFS satellite data. JSTOR 2006, 91, 1085–1089. [Google Scholar]
- Sahu, S.K.; Mangaraj, P.; Beig, G.; Samal, A.; Pradhan, C.; Dash, S.; Tyagi, B. Quantifying the high resolution seasonal emission of air pollutants from crop residue burning in India. Environ. Pollut. 2021, 286, 117165. [Google Scholar] [CrossRef]
- Parmod, K.; Surender, K.; Laxmi, J. Socioeconomic and Environmental Implications of Agricultural Residue Burning; Springer: New Delhi, India, 2015. [Google Scholar]
- Siddiqui, N.A.; Tauseef, S.M.; Bansal, K. Advances in Health and Environment Safety; Springer Nature Singapore Pte Ltd.: Singapore, 2016. [Google Scholar]
- Jin, Y.; Bin, C. Global warming impact assessment of a crop residue gasification project- A dynamic LCA perspective. Appl. Energy 2014, 122, 269–279. [Google Scholar]
- Singh, R.P.; Dhaliwal, H.S.; Humphreys, E.; Sidhu, H.S.; Manpreet, S.; Yadvinder, S.; Blackwell, J. Economic Evaluation of the Happy Seeder for Rice-Wheat Systems in Punjab, India. Available online: https://ageconsearch.umn.edu/record/5975/files/cp08si03.pdf (accessed on 10 May 2021).
- Venkataraman, C.; Habib, G.; Kadamba, D.; Shrivastava, M.; Leon, J.F.; Crouzille, B.; Boucher, O.; Streets, D.G. Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Glob. Biogeochem. Cycles 2006, 2. [Google Scholar] [CrossRef]
- Gadde, B.; Sébastien, B.; Christoph, M.; Savitri, G. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ. Pollut. 2000, 157, 1554–1558. [Google Scholar] [CrossRef] [PubMed]
- Jitendra, S.V.; Ishan, K.; Kundan, P.; Deepanwita, G.N.; Polash, M. India’s Burning Issues of Crop Burning Takes a New Turn. Down Earth 2017. Available online: https://www.downtoearth.org.in/coverage/agriculture/river-of-fire-57924 (accessed on 10 May 2021).
- Prabhat, K.G.; Gupta, S.S.; Nahar, S.; Dixit, C.K.; Singh, D.P.; Sharma, C.; Tiwari, M.K.; Raj, K.G.; Garg, S.C. Residue burning in rice–wheat cropping system: Causes and implications. Curr. Sci. 2004, 87, 1713–1717. [Google Scholar]
- Streets, D.G.; Bond, T.C.; Carmichael, G.R.; Fernandes, S.D.; Fu, Q.; He, D.; Klimont, Z.; Nelson, S.M.; Tsai, N.Y.; Wang, M.Q.; et al. An Inventory of Gaseous and Primary Aerosol Emissions in Asia in the Year 2000. J. Geophys. Res. 2003, 108, 8809–8823. [Google Scholar] [CrossRef]
- Washenfelder, R.A.; Attwood, A.R. Biomass burning dominates brown carbon absorption in the rural southeastern United States. J. Geophy. Res. 2015, 42, 653–664. [Google Scholar] [CrossRef]
- Hatch, L.E.; Luo, W.; Pankow, J.F.; Yokelson, R.J.; Stockwell, C.E.; Barsanti, K.C. Identification and Quantification of Gaseous Organic Compounds Emitted from Biomass Burning using Two-Dimensional Gas Chromatography-time-of-flight Mass Spectrometry. Atomspheric Chem. Phys. Atomos. Chem. Phys. 2015, 15, 1865–1899. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.H.; Alexander, L.F.; Avi, L.; Jin, Y.C.; Zhang, H.F.; Roya, B.; Lin, Y.H. Brown Carbon Formation from Nighttime Chemistry of Unsaturated Heterocyclic Volatile Organic Compounds. Environ. Sci. Technol. Lett. 2019, 6, 184–190. [Google Scholar] [CrossRef]
- Singh, C.P.; Sushma, P. Characterization of residue burning from agricultural system in India using space-based observations. J. India. Soc. Remote Sens. 2011, 39, 423–429. [Google Scholar] [CrossRef]
- Jain, N.; Bhatia, A.; Pathak, H. Emission of Air Pollutants from Crop Residue Burning in India. Aerosol. Air Qual. Res. 2014, 14, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Lohan, S.K.; Jat, H.S.; Arvind, K.Y.; Sidhu, H.S.; Jat, M.L.; Madhu, C.; Jyotsna, K.P.; Sharma, P.C. Burning issues of paddy residue management in northwest states of India. Renew. Sust. Energ. Rev. 2018, 81, 693–706. [Google Scholar] [CrossRef]
- Allen, A.; Voiland, A. NASA Earth Observatory, Haze Blankets Northern India. Available online: https://earthobservatory.nasa.gov/images/91240/haze-blankets-northern-india (accessed on 1 May 2021).
- Kaliramana, R.S.; Sangwan, A.; Parveen, S. Burning of Crop Residues Harmful Effects in Soil Ecosystem and Potential Solutions, Effective Management of Paddy Residue/Wheat Stubble. Adv. Agric. Sci. 2019, 19, 99–124. [Google Scholar]
- Mario, J.M.; Luisa, T.M. Megacities and atmospheric pollution. J. Air. Waste Manag. 2004, 54, 644–680. [Google Scholar]
- Parmod, K.; Surender, K. Economic Impact of Air Pollution from Agricultural Residue Burning on Human Health; Springer International Publishing: New York, NY, USA, 2016. [Google Scholar]
- Singh, Y.; Gupta, R.K.; Jagmohan, S.; Gurpreet, S.; Gobinder, S.; Ladha, J.K. Placement effects on paddy residue decomposition and nutrient dynamics on two soil types during wheat cropping in paddy-wheat system in north western India. Nutr. Cycling. Agroecosyst. 2010, 88, 471–480. [Google Scholar] [CrossRef]
- NPMCR. Available online: http://agricoop.nic.in/sites/default/files/NPMCR_1.pdf (accessed on 6 March 2019).
- Mandal, K.G.; Arun, K.M.; Kuntal, M.H.; Kali, K.B.; Prabir, K.G.; Manoranjan, M. Rice residue management options and effects on soil properties and crop productivity. Food Agric. Environ. 2004, 2, 224–231. [Google Scholar]
- Gangwar, K.S.; Singh, K.K.; Sharma, S.K.; Tomar, O.K. Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. Soil. Till. Res. 2006, 88, 242–252. [Google Scholar] [CrossRef]
- Singh, Y. Crop Residue Management in Rice-Wheat Cropping System. In Abstracts of Poster Sessions. 2nd International Crop Science Congress; National Academy of Agricultural Sciences: New Delhi, India, 1996; Volume 43, Available online: https://www.researchgate.net/profile/Bijay-Singh-3/publication/315515730_Management_of_Crop_Residues_in_Rice-Wheat_Cropping_System_in_the_Indo-Gangetic_Plains/links/58d34be3aca2723c0a777e7b/Management-of-Crop-Residues-in-Rice-Wheat-Cropping-System-in-the-Indo-Gangetic-Plains.pdf (accessed on 10 May 2021).
- Sidhu, B.S.; Beri, V. Experience with managing rice residues in intensive rice-wheat cropping system in Punjab. Conserv. Agric. Status Prospect. 2005, 55–63. [Google Scholar]
- Walia, S.S. Effect of management of crop residues on soil properties in rice-wheat cropping system. Environ. Ecol. 1995, 13, 503–507. [Google Scholar]
- Singh, Y.; Singh, B. Efficient management of primary nutrients in the rice-wheat system. J. Crop. Prod. 2001, 4, 23–85. [Google Scholar] [CrossRef]
- Sharma, H.L.; Rajendra, P. Effect of applied organic manure, crop residues and nitrogen in rice-wheat cropping system in northwestern Himalayas. HJAR 1985, 11, 63–68. [Google Scholar]
- Sharma, H.L.; Singh, C.M.; Modgal, S.C. Use of organics in rice-wheat crop sequence. Indian. J. Agric. Sci. 1987, 57, 163–168. [Google Scholar]
- Verma, T.S.; Bhagat, R.M. Impact of rice straw management practices in yields, nitrogen uptake and soil properties in a wheat-rice rotation in northern India. Fertil. Res. 1992, 33, 97–106. [Google Scholar] [CrossRef]
- Olaf, E. Crop residue mulching in tropical and semi-tropical countries: An evaluation of residue availability and other technological implications. Soil. Till. Res. 2002, 67, 115–133. [Google Scholar]
- Peeyush, S.; Vikas, A.; Sharma, R.K. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize–wheat rotation in rainfed subhumid inceptisols, India. Eur. J. Agron. 2011, 34, 46–51. [Google Scholar]
- Acharya, C.L.; Sharma, P.D. Tillage and mulch effects on soil physical environment, root growth, nutrient uptake and yield of maize and wheat on an Alfisol in northwest India. Soil. Till. Res. 1994, 32, 291–302. [Google Scholar] [CrossRef]
- Jeffrey, P.M.; Purnendu, N.S.; Wesley, W.W.; Daniel, S.M.; Jonathan, F.W.; William, R.H.; Philip, H.; Robert, R.; Blaine, R.H. No-tillage and high-residue practices reduce soil water evaporation. Calif. Agric. 2012, 66, 55–61. [Google Scholar]
- Hari, R.; Yadvinder, S.; Saini, K.S.; Kler, D.S. Agronomic and economic evaluation of permanent raised beds, no tillage and straw mulching for an irrigated maize-wheat system in northwest India. Exp. Agric. 2012, 48, 21–38. [Google Scholar]
- Rickman, J.F. Manual for Laser Land Levelling. In Rice-Wheat Consortium for the Indo-Gangetic Plains; CIMMYT: México-Veracruz, Mexico, 2002. [Google Scholar]
- Unger, P.U.; Stewarta, B.A.; Parrb, J.F.; Singh, R.P. Crop residue management and tillage methods for conserving soil and water in semi-arid regions. Soil. Till. Res. 1991, 20, 219–240. [Google Scholar] [CrossRef]
- Zaman, A.; Choudhuri, S.K. Water use and yield of wheat under unmulched and mulched conditions in laterite soil of the Indian Sub-continent. J. Agron. Crop. Sci. 1995, 175, 349–353. [Google Scholar] [CrossRef]
- Sunita, G.; Lata, N.; Patel, V.B. Quality evaluation of co-composted wheat straw, poultry droppings and oil seed cakes. Biodegradation 2009, 20, 307–317. [Google Scholar]
- Kumar, S. Composting of municipal solid waste. Crit. Rev. Biotechnol. 2011, 31, 112–136. [Google Scholar] [CrossRef] [PubMed]
- Ponnamperuma, F.N. Straw as a source of nutrients for wetland rice. Org. Matter Rice 1984, 117–136. [Google Scholar]
- Peng, S.B.; Roland, J.B.; Huang, J.I.; Jian, C.Y.; Ying, B.Z.; Zhong, X.H.; Wang, G.H.; Zhang, F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field. Crops. Res. 2006, 96, 37–47. [Google Scholar] [CrossRef]
- Misra, R.V.; Roy, R.N.; Hiraoka, H. On-Farm Composting Methods; Land and Water Discussion Paper 2; UN-FAO: Rome, Italy, 2003. [Google Scholar]
- Blackwell, J.; Sidhu, H.S.; Dhillon, S.S.; Prashar, A. The Happy Seeder concept- a solution to the problem of sowing into heavy stubble residues. Aust. J. Exp. Agric. 2003, 47, 5–6. [Google Scholar]
- Sims, B.; Kienzle, J. Mechanization of conservation agriculture for smallholders: Issues and options for sustainable intensification. Environments 2015, 2, 139–166. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, S.; Manpreet, S.; Blackwell, J.; Humphreys, E.; Bector, V.; Yadvinder, S.; Malkeet, S.; Sarbjit, S. Development of the Happy Seeder for direct drilling into combine harvested rice. Aust. J. Exp. Agric. 2008, 127, 159–170. [Google Scholar]
- Kaur, A.; Grover, D.K. Happy Seeder Technology in Punjab: A Discriminant Analysis. IJE&D 2017, 13, 123–128. [Google Scholar]
- Kishore, V.V.N.; Bhandari, P.M.; Gupta, P. Biomass energy technologies for rural infrastructure and village power- opportunities and challenges in the context of global climate change concerns. Energy Policy 2004, 32, 801–810. [Google Scholar] [CrossRef]
- Priya, C.; Bisaria, V.S. Simultaneous Bioconversion of Cellulose and Hemicellulose to Ethanol. Crit. Rev. Biotechnol. 1998, 18, 295–331. [Google Scholar]
- Jenkins, B.M.; Baxter, L.L.; Miles, T.R. Combustion properties of biomass. Fuel. Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Venkateswara, P.R.; Baral, S.S.; Dey, R.; Mutnuri, S. Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew. Sustain. Energy. Rev. 2010, 14, 2086–2094. [Google Scholar]
- Gross, T.; Breitenmoser, L.; Kumar, S.; Ehrensperger, A.; Wintgens, T.; Hugi, C. Anaerobic digestion of biowaste in India municipalities: Effects on energy, fertilizers, water and the local environment. Resour. Conserv. Recycl. 2021, 170, 105569. [Google Scholar] [CrossRef]
- Abdelsalam, E.M.; Samer, M.; Amer, M.A.; Amer, B.M.A. Biogas production using dry fermentation technology through co-digestion of manure and agricultural wastes. Environ. Dev. Sustain. 2021, 23, 8746–8757. [Google Scholar] [CrossRef]
- Moonmoon, H.; Das, D.; Baruah, D.C. Bioenergy potential from crop residue biomass in India. Renew. Sustain. Energy. Rev. 2014, 32, 504–512. [Google Scholar]
- Rajeev, K.S.; Vikram, J.S.; Raveendran, S.; Parameshwaran, B.; Kanakambaran, U.J.; Kuttavan, V.S.; Kuni, P.R.; Ashok, P. Lignocelulosic ethanol in India: Prospects, challenges and feedstock availability. Bioresour. Technol. 2010, 101, 4826–4833. [Google Scholar]
- Gathala, M.K.; Ladha, J.K.; Vivak, K.; Yashpal, S.S.; Virender, K.; Paradeep, K.S.; Sheetal, S.; Himanshu, P. Tillage and Crop Establishment Affects Sustainability of South Asian Rice–Wheat System. ASA 2011, 103, 961–971. [Google Scholar] [CrossRef]
- D'Adamo, I.; Falcone, P.M.; Morone, P. A New Socio-economic Indicator to Measure the Performance of Bioeconomy Sectors in Europe. Ecol. Econ. 2020, 176, 106724. [Google Scholar] [CrossRef]
- D'Adamo, I.; Falcone, P.M.; Huisingh, D.; Morone, P. A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond? Renew. Energy 2021, 163, 1660–1672. [Google Scholar] [CrossRef]
Category | Pollutant | Source |
---|---|---|
Particulate matters | PM2.5 and PM10 | Condensation after combustion of gases and incomplete combustion of organic matters |
PM100 | Incomplete combustion of in-organic materials, particles on burnt soil | |
Gases | CO | Incomplete combustion of organic matters |
CH4 | Incomplete combustion of organic matters | |
O3 | A secondary pollutant formed due to the reaction of nitrogen oxide and hydrocarbon | |
NO, NO2 N2O | Oxidation of fuel-N or N2 in the air at high temperatures | |
Polycyclic aromatic hydrocarbons (PAHs) | Incomplete combustion of organic matters |
Pollutants | Area in Delhi | Current Level (µg/m3) | Permissible Limit (µg/m3) |
---|---|---|---|
PM2.5 | Punjabi Bagh | 650 | 60–80 |
PM10 | Punjabi Bagh | 1000 | 60–80 |
CO | IGI Airport | 6.3 | 2–4 |
SO2 | IGI Airport | 29.8 | 60–80 |
NOX | Anand Vihar | 167 | 60–80 |
Nutrient | Concentration in Straw (g/kg) | Percentage Lost in Burning | Loss (kg/ha) |
---|---|---|---|
C | 400 | 100 | 2400 |
N | 6.5 | 90 | 35 |
P | 2.1 | 25 | 3.2 |
K | 17.5 | 20 | 21 |
S | 0.75 | 60 | 2.7 |
Soil Property | Crop Residue Management | ||
---|---|---|---|
Incorporated | Removed | Burned | |
Total P (mg/kg) | 612 | 420 | 390 |
Total K (mg/kg) | 18.1 | 15.4 | 17.1 |
Olsen P (mg/kg) | 20.5 | 17.2 | 14.4 |
Available K (mg/kg) | 52 | 45 | 58 |
Available S (mg/kg) | 61 | 55 | 34 |
Physiochemical Properties of the Soil | Crop Residue Management | ||
---|---|---|---|
Incorporated | Removed | Burned | |
pH | 7.7 | 7.6 | 7.6 |
EC (dSM−1) | 0.18 | 0.13 | 0.13 |
Organic C (%) | 0.75 | 0.59 | 0.69 |
Available N (kg/ha) | 154 | 139 | 143 |
Available P (kg/ha) | 45 | 38 | 32 |
Available K (kg/ha) | 85 | 56 | 77 |
Total N (kg/ha) | 2501 | 2002 | 1725 |
Total P (kg/ha) | 1346 | 924 | 858 |
Total K (kg/ha) | 40480 | 34540 | 38280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porichha, G.K.; Hu, Y.; Rao, K.T.V.; Xu, C.C. Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy. Energies 2021, 14, 4281. https://doi.org/10.3390/en14144281
Porichha GK, Hu Y, Rao KTV, Xu CC. Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy. Energies. 2021; 14(14):4281. https://doi.org/10.3390/en14144281
Chicago/Turabian StylePorichha, Gaurav Kumar, Yulin Hu, Kasanneni Tirumala Venkateswara Rao, and Chunbao Charles Xu. 2021. "Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy" Energies 14, no. 14: 4281. https://doi.org/10.3390/en14144281
APA StylePorichha, G. K., Hu, Y., Rao, K. T. V., & Xu, C. C. (2021). Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy. Energies, 14(14), 4281. https://doi.org/10.3390/en14144281