Techno-Economic Modelling of Micro-Hydropower Mini-Grids in Nepal to Improve Financial Sustainability and Enable Electric Cooking
Abstract
:1. Introduction
2. Case Study
3. Methodology
4. Data Collection
5. Techno-Economic Model Development and Validation
5.1. PEU and Domestic Load Modelling
5.2. Electric Cooking Load Modelling
5.3. Community Techno-Economic Model
6. Results
6.1. Economic Viability
6.2. DSM Measures and Additional End Uses
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Sustainable Development Goals Knowledge Platform: Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/?menu=1300 (accessed on 17 April 2019).
- Nepal Micro Hydropower Development Association. MH in Nepal. Available online: https://microhydro.org.np/mh-in-nepal/ (accessed on 6 October 2020).
- Butchers, J.; Williamson, S.; Booker, J.; Tran, A.; Karki, P.B.; Gautam, B. Understanding sustainable operation of micro-hydropower: A field study in Nepal. Energy Sustain. Dev. 2020, 57, 12–21. [Google Scholar] [CrossRef]
- Thapa, R.B.; Upreti, B.R.; Devkota, D.; Pokharel, G.R. Validating technical performance of micro-hydropower plants in Nepal. J. Agric. For. Univ. 2019, 3, 25–36. [Google Scholar]
- Sovacool, B.K.; Bambawale, M.J.; Gippner, O.; Dhakal, S. Electrification in the Mountain Kingdom: The implications of the Nepal Power Development Project (NPDP). Energy Sustain. Dev. 2011, 15, 254–265. [Google Scholar] [CrossRef]
- Practical Action. Poor People’s Energy Outlook 2018; Practical Action: Rugby, UK, 2018. [Google Scholar]
- Nepal Ministry of Finance. Economic Survey 2017/18; Ministry of Finance: Kathmandu, Nepal, 2018.
- Nepal Central Bureau of Statistics. Annual Household Survey 2014/15; Central Bureau of Statistics: Kathmandu, Nepal, 2016; ISBN 9789937012782.
- Killer in the Kitchen—Practical Action. Available online: https://practicalaction.org/our-work/projects/killer-in-the-kitchen/ (accessed on 19 March 2020).
- Butchers, J.; Williamson, S.; Booker, J.; Tran, A.; Gautam, B.; Karki, P.B. A Study of Technical, Economic and Social Factors Affecting Micro-Hydropower Plants in Nepal. In Proceedings of the 2018 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 18–21 October 2018; pp. 446–453. [Google Scholar] [CrossRef] [Green Version]
- Brüderle, A.; Attigah, B.; Bodenbender, M. Productive Use of Energy—PRODUSE A Manual for Electrification Practitioners; European Union Energy Initiative Partnership Dialogue Facility, GIZ: Eschborn, Germany, 2011. [Google Scholar]
- Bhandari, R.; Saptalena, L.G.; Kusch, W. Sustainability assessment of a micro hydropower plant in Nepal. Energy. Sustain. Soc. 2018, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Yadoo, A.; Cruickshank, H. The role for low carbon electrification technologies in poverty reduction and climate change strategies: A focus on renewable energy mini-grids with case studies in Nepal, Peru and Kenya. Energy Policy 2012, 42, 591–602. [Google Scholar] [CrossRef]
- Silwal, K.; Freere, P.; Pandit, S.; Clements, W. Very Weak Isolated Microhydro Grid Effects on Electric Cooking in Nepal. In Proceedings of the 2020 International Conference on Electrical Engineering and Control Technologies (CEECT), Melbourne, Australia, 10–13 December 2020; pp. 1–6. [Google Scholar]
- Clements, W.; Silwal, K.; Pandit, S.; Leary, J.; Gautam, B.; Williamson, S.; Tran, A.; Harper, P. Unlocking electric cooking on Nepali micro-hydropower mini-grids. Energy Sustain. Dev. 2020, 57, 119–131. [Google Scholar] [CrossRef]
- Winrock International for Agricultural Development. Baseline Report of Micro Hydro Plants (MHP) Selected under Sharing Learning across Projects: Operating MHPs as Commercially Viable Enterprises; Wuppertal Institute for Climate, Environment and Energy: Wuppertal, Germany, 2017. [Google Scholar]
- Quetchenbach, T.G.; Harper, M.J.; Robinson, J., IV; Hervin, K.K.; Chase, N.A.; Dorji, C.; Jacobson, A.E. The GridShare solution: A smart grid approach to improve service provision on a renewable energy mini-grid in Bhutan. Environ. Res. Lett. 2013, 8, 014018. [Google Scholar] [CrossRef] [Green Version]
- Williamson, S.J.; David Lubitz, W.; Williams, A.A.; Booker, J.D.; Butchers, J.P. Challenges Facing the Implementation of Pico-Hydropower Technologies. J. Sustain. Res. 2019, 2, e200003. [Google Scholar] [CrossRef]
- Livelihood Improvement through Inclusive Finance and Technology Private Limited (LIIFT Nepal). Establishing Sustainable Model for Financing Community-Based Micro-Hydro Projects through Local Financial Institutions; Alternative Energy Promotion Centre, Renewable Energy for Rural Livelihood Programme: Kathmandu, Nepal, 2017. [Google Scholar]
- Kim, E.; Karky, B.S. Water resources use in the Annapurna Conservation Area: Case study of micro-hydropower management in Sikles and Chhomrong. In Proceedings of the Case Study on Mountain Infrastructure: Access, Communications, Energy, Mountain Forum E-Consultation for the UNEP/Bishkek Global Mountain Summi, Bishkek, Kyrgyzstan, 29 October–1 November 2002. [Google Scholar]
- Pokharel, G.R.; Chhetri, A.B.; Khan, M.I.; Islam, M.R. Decentralized micro-hydro energy systems in Nepal: En route to sustainable energy development. Energy Sources Part B Econ. Plan. Policy 2008, 3, 144–154. [Google Scholar] [CrossRef]
- Gautam, B.; Pandit, S.; Clements, W.; Williamson, S.; Silwal, K. Assessing Electric Cooking Potential in Micro Hydropower Microgrids in Nepal. 2020. Available online: https://mecs.org.uk/wp-content/uploads/2020/12/MECS-TRIID-PEEDA_updated-Report.pdf (accessed on 12 July 2021).
- Leary, J.; Hlaing, W.; Myint, A.; Win, P.; Phyu, M.; Moe, E.T.; Scott, N.; Batchelor, S.; Vaghela, D. Opportunities & Challenges for eCook Myanmar. 2019. Available online: https://www.mecs.org.uk/wp-content/uploads/2020/12/eCook-Myanmar-Country-Working-Paper-29-10-19-COMPRESSED.pdf (accessed on 12 July 2021).
- Butchers, J.; Williamson, S.; Booker, J. Micro-Hydropower in Nepal: Analysing the Project Process to Understand Drivers that Strengthen and Weaken Sustainability. Sustainability 2021, 13, 1582. [Google Scholar] [CrossRef]
- Müller, M.F.; Thompson, S.E.; Gadgil, A.J. Estimating the price (in)elasticity of off-grid electricity demand. Dev. Eng. 2018, 3, 12–22. [Google Scholar] [CrossRef]
- Casillas, C.E.; Kammen, D.M. The delivery of low-cost, low-carbon rural energy services. Energy Policy 2011, 39, 4520–4528. [Google Scholar] [CrossRef]
- Lombardi, F.; Balderrama, S.; Quoilin, S.; Colombo, E. Generating high-resolution multi-energy load profiles for remote areas with an open-source stochastic model. Energy 2019, 177, 433–444. [Google Scholar] [CrossRef]
- Richardson, I.; Thomson, M.; Infield, D.; Clifford, C. Domestic electricity use: A high-resolution energy demand model. Energy Build. 2010, 42, 1878–1887. [Google Scholar] [CrossRef] [Green Version]
- Widén, J.; Wäckelgård, E. A high-resolution stochastic model of domestic activity patterns and electricity demand. Appl. Energy 2010, 87, 1880–1892. [Google Scholar] [CrossRef]
- Good, N.; Zhang, L.; Navarro-Espinosa, A.; Mancarella, P. High resolution modelling of multi-energy domestic demand profiles. Appl. Energy 2015, 137, 193–210. [Google Scholar] [CrossRef]
- Fischer, D.; Härtl, A.; Wille-Haussmann, B. Model for electric load profiles with high time resolution for German households. Energy Build. 2015, 92, 170–179. [Google Scholar] [CrossRef]
- Tsagarakis, G.; Collin, A.J.; Kiprakis, A.E. Modelling the electrical loads of UK residential energy users. In Proceedings of the 2012 47th International Universities Power Engineering Conference (UPEC), Uxbridge, UK, 4–7 September 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Marszal-Pomianowska, A.; Heiselberg, P.; Kalyanova Larsen, O. Household electricity demand profiles—A high-resolution load model to facilitate modelling of energy flexible buildings. Energy 2016, 103, 487–501. [Google Scholar] [CrossRef]
- Boait, P.; Gammon, R.; Advani, V.; Wade, N.; Greenwood, D.; Davison, P. ESCoBox: A set of tools for mini-grid sustainability in the developing world. Sustainability 2017, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- Mandelli, S.; Merlo, M.; Colombo, E. Novel procedure to formulate load profiles for off-grid rural areas. Energy Sustain. Dev. 2016, 31, 130–142. [Google Scholar] [CrossRef]
- Balderrama, S.; Lombardi, F.; Riva, F.; Canedo, W.; Colombo, E.; Quoilin, S. A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: The case study of the “El Espino” community. Energy 2019, 188, 116073. [Google Scholar] [CrossRef]
- Stevanato, N.; Lombardi, F.; Guidicini, G.; Rinaldi, L.; Balderrama, S.L.; Pavičević, M.; Quoilin, S.; Colombo, E. Long-term sizing of rural microgrids: Accounting for load evolution through multi-step investment plan and stochastic optimization. Energy Sustain. Dev. 2020, 58, 16–29. [Google Scholar] [CrossRef]
- Stevanato, N.; Rinaldi, L.; Pistolese, S.; Balderrama, S.; Quoilin, S.; Colombo, E. Modeling of a Village-Scale Multi-Energy System for the Integrated Supply of Electric and Thermal Energy. Appl. Sci. 2020, 10, 7445. [Google Scholar] [CrossRef]
- Lombardi, F.; Rocco, M.V.; Colombo, E. A multi-layer energy modelling methodology to assess the impact of heat-electricity integration strategies: The case of the residential cooking sector in Italy. Energy 2019, 170, 1249–1260. [Google Scholar] [CrossRef]
- Lombardi, F.; Riva, F.; Sacchi, M.; Colombo, E. Enabling combined access to electricity and clean cooking with PV-microgrids: New evidences from a high-resolution model of cooking loads. Energy Sustain. Dev. 2019, 49, 78–88. [Google Scholar] [CrossRef]
- Modern Energy Cooking Services (MECS). MECS—ECO Challenge Fund—Modern Energy Cooking Services. Available online: https://mecs.org.uk/challenge-fund/past-funds/mecs-eco-challenge-fund/ (accessed on 14 May 2021).
- Chan, J.; Lubitz, W. Electronic load controller (ELC) design and simulation for remote rural communities: A powerhouse ELC compatible with household distributed-ELCs in Nepal. In Proceedings of the 2016 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 13–16 October 2016; pp. 360–367. [Google Scholar] [CrossRef]
- United Nations Nepal. Nepal Administrative Unit—Province 1 Map_UN Nepal Information Platform. Available online: https://un.org.np/index.php/map/nepal-administrative-unit-province-1-map (accessed on 14 May 2021).
- Kitson, J.; Williamson, S.J.; Harper, P.W.; McMahon, C.A.; Rosenberg, G.; Tierney, M.J.; Bell, K.; Gautam, B. Modelling of an expandable, reconfigurable, renewable DC microgrid for off-grid communities. Energy 2018, 160, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Nepal Electricity Authority (NEA). Consumer Tariff Data Grid Electricity. Available online: https://www.nea.org.np/admin/assets/uploads/Consumer_Tarrif_data.pdf (accessed on 12 July 2021).
Number of households | 1093 | |
Types of productive end uses | 17 | |
Tariff system | NPR 110 (USD 0.93), flat rate | |
Generation capacity (kW) | 100 | |
Turbine | Type | Crossflow |
Gross head (metres) | 46 | |
Design flow (litres per second) | 380 | |
Speed (RPM) | 850 |
Meter | 3A/6 A | 10 A | 16 A | 32 A |
Minimum unit (kWh) | 18 | 32 | 40 | 50 |
Minimum unit charge (NPR) | 110 (USD 0.93) | 250 (USD 2.11) | 300 (USD 2.53) | 350 (USD 2.95) |
Per unit charge above minimum (NPR) | 7 (USD 0.06) | 8 (USD 0.07) | 8 | 8 |
End uses | Households (99% of 1093) Shops (15) | Households (1% of 1093) Schools (Primary) (9) MHP office (1) Government offices (2) Hotel (6) Police station (1) Poultry farms (4) Single phase mills (3) | Schools (Higher (3), Secondary (2) and Campus (2)) Cold storage (1) Health-post (1) Banks (2) | Crusher (1) 3 Phase mills (8) Telecoms tower (1) |
Household Type | % of (Total Number) | Appliances Owned |
---|---|---|
1 | 40 (437) | Indoor and outdoor lights, mobile phones |
2 | 29 (318) | Indoor and outdoor lights, mobile phones, TV |
3 | 15 (164) | Indoor and outdoor lights, mobile phones, TV, radio, rice cooker, electric kettle |
4 | 14 (154) | Indoor and outdoor lights, mobile phones, TV, radio, rice cooker, electric kettle, laptop, router, refrigerator, torch |
5 | 1 (10) | Indoor and outdoor lights, mobile phones, TV, radio, rice cooker, electric kettle, laptop, router, refrigerator, torch, heater, power tools |
Induction | 0.8 (8) | HH type 2 plus induction cooker |
Induction + rice | 0.2 (2) | HH type 2 plus induction cooker, rice cooker |
Meal (Frequency (%)) | No. Dishes | Dishes | Frequency (%) | Cooking Cycle/Typology |
---|---|---|---|---|
Breakfast 1 (90%) | 3 | Dal, rice, vegetables | 30 | Dal: HP 10 min (frying/boiling), MP 15 min (simmering) Rice: HP 10 min (boiling), MP 15 min (simmering) Vegetables: HP 10 min (frying), MP 20 min (lower heat) |
2 | Rice, vegetables | 50 | See above | |
1 | Dal or rice | 20 | See above | |
Breakfast 2 (10%) | 2 | Meat, rice | 70 | Meat: HP 10 min (frying), MP 25 min (lower heat) |
1 | Meat or rice | 30 | See above | |
Lunch 1 (50%) | 1 | Noodles | 50 | HP 10 min (boiling), MP 10 min (simmering) |
Lunch 2 (50%) | 1 | Potatoes | 50 | HP 10 min (frying), MP 15 min (lower heat) |
Dinner 1 (80%) | Same as Breakfast 1 except frequency 80% | |||
Dinner 2 (20%) | Same as Breakfast 2 except frequency 20% |
Cost | Amount per Month (NPR) |
---|---|
Operator salary (2) | 20,000 (USD 169) |
Admin staff salary | 10,000 (USD 84) |
Meter readers payment | 10,000 (USD 84) |
Field staff salary (2) | 12,500 (USD 105) |
Maintenance budget | 15% of total income |
Scenario | Energy (kWh) | Income (NPR) | Costs (NPR) | Profit (NPR) | Peak Load Mean (kW) | Peak Load across Month (kW) | Peak Load Reduced Variability (kW) | Average Load Factor (%) |
---|---|---|---|---|---|---|---|---|
B | 37,000 | 50,000 | 80.7 | 108.4 | 94.6 | 60.9 | ||
P1 | 37,000 | 247,000 | 122,000 | 124,900 | 80.7 | 108.4 | 94.6 | 60.9 |
P2 | 28,300 | 212,100 | 116,800 | 95,300 | 73.2 | 97.9 | 84.4 | 50.9 |
Scenario | Energy (kWh) | Income (NPR) | Costs (NPR) | Profit (NPR) | Peak Load Mean (kW) | Peak Load across Month (kW) | Peak Load Reduced Variability (kW) | Average Load Factor (%) |
---|---|---|---|---|---|---|---|---|
B | 37,000 | 50,000 | 80.7 | 108.4 | 94.6 | 60.9 | ||
D1 | 37,200 | 248,100 | 122,200 | 125,900 | 76.0 | 92.1 | 82.7 | 67.6 |
D2 | 37,900 | 254,000 | 123,100 | 130,900 | 76.3 | 101.8 | 88.0 | 66.8 |
Scenario | Energy (kWh) | Income (NPR) | Costs (NPR) | Profit (NPR) | Peak Load Mean (kW) | Peak Load across Month (kW) | Peak Load Reduced Variability (kW) | Average Load Factor (%) |
---|---|---|---|---|---|---|---|---|
B | 37,000 | 50,000 | 80.7 | 108.4 | 94.6 | 60.9 | ||
D3 | 38,700 | 258,400 | 123,800 | 134,600 | 83.4 | 98.1 | 89.2 | 65.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clements, W.; Pandit, S.; Bajracharya, P.; Butchers, J.; Williamson, S.; Gautam, B.; Harper, P. Techno-Economic Modelling of Micro-Hydropower Mini-Grids in Nepal to Improve Financial Sustainability and Enable Electric Cooking. Energies 2021, 14, 4232. https://doi.org/10.3390/en14144232
Clements W, Pandit S, Bajracharya P, Butchers J, Williamson S, Gautam B, Harper P. Techno-Economic Modelling of Micro-Hydropower Mini-Grids in Nepal to Improve Financial Sustainability and Enable Electric Cooking. Energies. 2021; 14(14):4232. https://doi.org/10.3390/en14144232
Chicago/Turabian StyleClements, William, Surendra Pandit, Prashanna Bajracharya, Joe Butchers, Sam Williamson, Biraj Gautam, and Paul Harper. 2021. "Techno-Economic Modelling of Micro-Hydropower Mini-Grids in Nepal to Improve Financial Sustainability and Enable Electric Cooking" Energies 14, no. 14: 4232. https://doi.org/10.3390/en14144232
APA StyleClements, W., Pandit, S., Bajracharya, P., Butchers, J., Williamson, S., Gautam, B., & Harper, P. (2021). Techno-Economic Modelling of Micro-Hydropower Mini-Grids in Nepal to Improve Financial Sustainability and Enable Electric Cooking. Energies, 14(14), 4232. https://doi.org/10.3390/en14144232