3D Spatial Analysis of Particulate Matter (PM10, PM2.5 and PM1.0) and Gaseous Pollutants (H2S, SO2 and VOC) in Urban Areas Surrounding a Large Heat and Power Plant
Abstract
:1. Introduction
2. Methodology
Measurement Area
3. Analysis of Results
4. Meteorological Conditions
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chlebowska-Styś, A.; Sówka, I.; Kobus, D.; Pachurka, Ł. Analysis of concentrations trends and origins of PM10 in selected European cities. In Proceedings of the 9th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK, Boguszów-Gorce, Poland, 23–25 April 2017. [Google Scholar] [CrossRef] [Green Version]
- Jeong, C.H.J.; Jon, M.; Wang, J.M.; Greg, J.; Evans, G.J. Source apportionment of particulate matter in Europe: A review of methods and results. J. Aerosol. Sci. 2008, 39, 827–849. [Google Scholar]
- Zhao, Y.; Song, X.; Wang, Y.; Zhao, J.; Zhu, K. Seasonal patterns of PM10, PM2.5, and PM1.0 concentrations in a naturally ventilated residential underground garage. Build. Environ. 2017, 124, 294–314. [Google Scholar] [CrossRef]
- World Health Organization. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project. World Health Organization 309. 2013. Available online: http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-finaltechnical-report (accessed on 1 February 2021).
- Moreno-Silva, C.; Calvo, D.; Torres, N.; Ayala, L.; Gaitán, M.; González, L.; Rincón, P.; Susa, M.R. Hydrogen sulphide emissions and dispersion modelling from a wastewater reservoir using flux chamber measurements and AERMOD® simulations. Atmos. Environ. 2020, 224, 117263. [Google Scholar] [CrossRef]
- Liu, N.; Liu, X.; Jayaratne, R.; Morawska, L. A study on extending the use of air quality monitor data via deep learning techniques. J. Clean. Prod. 2020, 274, 122956. [Google Scholar] [CrossRef]
- Edginton, S.; O’Sullivan, D.E.; King, W.D.; Lougheed, M.D. The effect of acute outdoor air pollution on peak expiratory flow in individuals with asthma: A systematic review and meta-analysis. Environ. Res. 2021, 192, 110296. [Google Scholar] [CrossRef] [PubMed]
- Pope Iii, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Di Girolamo, L.; Van Donkelaar, A.; Tripathi, S.; Gupta, T.; Mohan, M. Variability of outdoor fine particulate (PM2.5) concentration in the Indian Subcontinent: A remote sensing approach. Remote. Sens. Environ. 2012, 127, 153–161. [Google Scholar] [CrossRef]
- Aventaggiato, L.; Colucci, A.P.; Strisciullo, G.; Favalli, F.; Gagliano-Candela, R. Lethal Hydrogen Sulfide poisoning in open space: An atypical case of asphyxiation of two workers. Forensic Sci. Int. 2020, 308, 110122. [Google Scholar] [CrossRef]
- Matos, V.R.; Ferreira, F.; Matos, S.J. Influence of ventilation in H2S exposure and emissions from a gravity sewer. Water Sci. Technol. 2020, 81, 2043–2056. [Google Scholar] [CrossRef]
- Fujita, Y.; Fujino, Y.; Onodera, M.; Kikuchi, S.; Kikkawa, T.; Inoue, Y.; Niitsu, H.; Takahashi, K.; Endo, S. A fatal case of acute hydrogen sulfide poisoning caused by hydrogen sulfide: Hydroxocobalamin therapy for acute hydrogen sulfide poisoning. J. Anal. Toxicol. 2011, 35, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Stetkiewicz, J. Siarkowodór. Dokumentacja dopuszczalnych wielkości narażenia zawodowego. Podstawy I Metod. Oceny Środowiska Pracy. 2011, 4, 97–117. [Google Scholar]
- Polish Journal of Laws 1966: Regulation of the Council of Ministers of 13 September 1966 on Admissible Concentrations of Substances in the Atmospheric Air. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU19660420253 (accessed on 10 September 2020).
- World Health Organization. Air Quality Guidelines, 2nd ed.; Hydrogen Sulfide: 2000, Chapter 6.6; Available online: https://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/pre2009/who-air-quality-guidelines-for-europe,-2nd-edition,-2000-cd-rom-version (accessed on 1 February 2021).
- Wu, M.X.; Basu, R.; Malig, B.; Broadwin, R.; Ebisu, K.; Gold, B.E.; Qi, L.; Derby, C.; Green, S.R. Association between gaseous air pollutants and inflammatory, hemostatic and lipid markers in a cohort of midlife women. Environ. Int. 2017, 107, 131–139. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency EPA. Available online: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality (accessed on 12 September 2020).
- Hormigos-Jimenez, S.; Padilla-Marcos, M.Á.; Meiss, A.; Gonzalez-Lezcano, R.A.; Feijó-Muñoz, J. Ventilation rate determination method for residential buildings according to TVOC emissions from building materials. Build. Environ. 2017, 123, 555–563. [Google Scholar] [CrossRef]
- IARC. IARC (International Agency for Research on Cancer) Monographs on the Evaluation of Carcinogenic Risks to Human. 2016. Available online: http://monographs.iarc.fr/ENG/Classification/latest_classif.php (accessed on 10 December 2020).
- Meng, M.; Zhou, J. Has air pollution emission level in the Beijing–Tianjin–Hebei region peaked? A panel data analysis. Ecol. Indic. 2020, 119, 106875. [Google Scholar] [CrossRef] [PubMed]
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. OJ L 152, 11.6.2008, p. 1–44 (BG, ES, CS, DA, DE, ET, EL, EN, FR, IT, LV, LT, HU, MT, NL, PL, PT, RO, SK, SL, FI, SV) Special Edition in Croatian: Chapter 15. 2008, Volume 029, pp. 169–212. Available online: http://data.europa.eu/eli/dir/2008/50/oj (accessed on 6 July 2021).
- World Health Organization. Who Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Global Update 2005. Summary of Risk Assessment; 2005; Available online: https://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/pre2009/air-quality-guidelines.-global-update-2005.-particulate-matter,-ozone,-nitrogen-dioxide-and-sulfur-dioxide (accessed on 1 February 2021).
- Hosker, R.P. Flow around isolated structures and building clusters, a review. ASHRAE Trans. 1985, 91, 1672–1692. [Google Scholar]
- Pesic, D.; Zigar, D.; Anghel, I.; Glisovic, S. Large Eddy Simulation of wind flow impact on fire-induced indoor and outdoor air pollution in an idealized street canyon. J. Wind. Eng. Ind. Aerodyn. 2016, 155, 89–99. [Google Scholar] [CrossRef]
- Lateb, M.; Meroney, R.N.; Yataghene, M.; Fellouah, H.; Saleh, F.; Boufadel, M.C. On the use of numerical modelling for near-field pollutant dispersion in urban environments—A review. Environ. Pollut. 2016, 208, 271–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murena, F.; Mele, B. Effect of short–time variations of wind velocity on mass transfer rate between street canyons and the atmospheric boundary layer. Atmos. Pollut. Res. 2014, 5, 484–490. [Google Scholar] [CrossRef] [Green Version]
- Kikumoto, H.; Ooka, R.A. numerical study of air pollutant dispersion with bimolecular chemical reactions in an urban street canyon using large-eddy simulation. Atmos. Environ. 2012, 54, 456–464. [Google Scholar] [CrossRef]
- Zhang, Y.; Kwok, K.; Liu, X.-P.; Niu, J.-L. Characteristics of air pollutant dispersion around a high-rise building. Environ. Pollut. 2015, 204, 280–288. [Google Scholar] [CrossRef]
- Zwack, L.M.; Paciorek, C.J.; Spengler, J.D.; Levy, J.I. Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques. Atmos. Environ. 2011, 45, 2507–2514. [Google Scholar] [CrossRef]
- Galatioto, F.; Bell, M. Exploring the processes governing roadside pollutant concentrations in urban street canyon. Environ. Sci. Pollut. Res. 2013, 20, 4750–4765. [Google Scholar] [CrossRef] [PubMed]
- Rakowska, A.; Wong, K.C.; Townsend, T.; Chan, K.L.; Westerdahl, D.; Ng, S.; Močnik, G.; Drinovec, L.; Ning, Z. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon. Atmos. Environ. 2014, 98, 260–270. [Google Scholar] [CrossRef]
- Peng, Z.-R.; Wang, D.; Wang, Z.; Gao, Y.; Lu, S. A study of vertical distribution patterns of PM2. 5 concentrations based on 410 ambient monitoring with unmanned aerial vehicles: A case in Hangzhou, China. Atmos. Environ. 2015, 123, 357–369. [Google Scholar] [CrossRef]
- Kalantar, B.; Mansor, S.B.; Abdul Halin, A.; Shafri, H.Z.M.; Zand, M. Multiple moving object detection from UAV videos 394 using trajectories of matched regional adjacency graphs. IEEE Trans. Geosci. Remote Sens. 2017, 55, 395. [Google Scholar] [CrossRef]
- Lambey, V.; Prasad, A.D. A review on air quality measurement using an unmanned aerial vehicle. Water Air Soil Pollut. 2021, 232, 1–32. [Google Scholar] [CrossRef]
- Xiong, X.; Shah, S.; Pallis, J.M. Balloon/Drone-Based Aerial Platforms for Remote Particulate Matter Pollutant Monitoring. 380 2018. Available online: https://scholarworks.bridgeport.edu/xmlui/handle/123456789/2236 (accessed on 1 February 2021).
- Jumaah, H.J.; Mansor, S.; Pradhan, B.; Adam, S.N. UAV-based PM2.5 monitoring for small-scale urban areas. Int. J. Geoinform. 2018, 14, 408. [Google Scholar] [CrossRef]
- Air Quality Parameters Data. Available online: https://powietrze.gios.gov.pl/pjp/current/station_details/table/295/3/0 (accessed on 8 May 2021).
- Singh, P.; Verma, P. A Comparative Study of Spatial Interpolation Technique (IDW and Kriging) for Determining Groundwater Quality. GIS Geostat. Tech. Groundw. Sci. 2019, 43–56. [Google Scholar] [CrossRef]
- Lima, A.; De Vivo, B.; Cicchella, D.; Cortini, M.; Albanese, S. Multifractal IDW interpolation and fractal filtering method in environmental studies: An application on regional stream sediments of (Italy), Campania region. Appl. Geochem. 2003, 18, 1853–1865. [Google Scholar] [CrossRef]
- Sówka, I.; Chlebowska-Styś, A.; Pachurka, Ł.; Rogula-Kozłowska, W.; Mathews, B. Analysis of Particulate Matter Concentration Variability and Origin in Selected Urban Areas in Poland. Sustainability 2019, 11, 5735. [Google Scholar] [CrossRef] [Green Version]
- Cichowicz, R.A.; Dobrzański, M. Indoor and Outdoor Concentrations of Particulate Matter and Gaseous Pollutants on Different Floors of a University Building: A Case Study. J. Ecol. Eng. 2021, 22, 162–173. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Rogula-Kopiec, P.; Mathews, B.; Klejnowski, K. Effects of road trac on the ambient concentrations of three PM fractions and their main components in a large Upper Silesian city. Annals of Warsaw University of Life Sciences-SGGW. Land Reclam. 2013, 45, 243–253. [Google Scholar]
- Gao, J.; Wang, K.; Wang, Y.; Liu, S.; Zhu, C.; Hao, J.; Liu, H.; Hua, S.; Tian, H. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environ. Pollut. 2018, 233, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Cichowicz, R.; Dobrzański, M. Spatial Analysis (Measurements at Heights of 10 m and 20 m above Ground Level) of the Concentrations of Particulate Matter (PM10, PM2.5, and PM1.0) and Gaseous Pollutants (H2S) on the University Campus: A Case Study. Atmosphere 2021, 12, 62. [Google Scholar] [CrossRef]
- Kourtidis, K.; Kelesis, A.; Petrakakis, M. Hydrogen sulfide (H2S) in urban ambient air. Atmos. Environ. 2008, 42, 7476–7482. [Google Scholar] [CrossRef]
- Cichowicz, R.; Wielgosiński, G. Analysis of Variations in Air Pollution Fields in Selected Cities in Poland and Germany. Ecol. Chem. Eng. 2018, 25, 217–227. [Google Scholar] [CrossRef] [Green Version]
Series: | Parameters | Temp. | Relative Humidity | Total Precipitation | Total Cloud Cover | Wind Speed | Wind Direction | |
---|---|---|---|---|---|---|---|---|
[2 m above gnd] | (High resol.) [sfc] | [10 m above gnd] | ||||||
Unit | °C | % | mm | % | km/h | ° | ||
A | Min | 9−12 | −1.2 | 75 | 0 | 2.7 | 13.5 | 149 |
24 h | −2.4 | 75 | 0 | 0 | 7.59 | 119 | ||
Max | 9−12 | 3.0 | 93 | 0 | 4.5 | 16.3 | 155 | |
24 h | 3.4 | 97 | 0 | 100 | 16.3 | 191 | ||
Average | 9−12 | 1.2 | 81.8 | 0 | 3.8 | 15.5 | 151 | |
24 h | 0.6 | 89.6 | 0 | 45.95 | 13.34 | 152 | ||
B | Min | 9−12 | 3 | 93 | 0 | 62 | 3.6 | 220 |
24 h | 0 | 87 | 0 | 30 | 3.6 | 83 | ||
Max | 9−12 | 5 | 100 | 0 | 95 | 10.8 | 240 | |
24 h | 5.2 | 98 | 15 | 95 | 10.8 | 237 | ||
Average | 9−12 | 4 | 96 | 0 | 78.5 | 5.9 | 230 | |
24 h | 3.1 | 93.6 | 7.5 | 62.5 | 5.85 | 190 | ||
C | Min | 9−12 | −1.6 | 68 | 0 | 32 | 14.8 | 225 |
24 h | −1.6 | 65 | 0 | 32 | 4.6 | 221.3 | ||
Max | 9−12 | 1 | 83 | 0 | 66 | 19.3 | 244 | |
24 h | 1.3 | 94 | 0 | 100 | 25.5 | 270 | ||
Average | 9−12 | −0.2 | 74.5 | 0 | 50.8 | 16.9 | 236 | |
24 h | −0.1 | 83.6 | 0 | 81.6 | 14.9 | 233.3 |
Series | A | B | C | ||||
---|---|---|---|---|---|---|---|
Unit | PM10 | PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | |
VIEP station data | μg/m3 | 40 | 34 | 37.5 | 31.75 | 30 | 25.6 |
Measurement | μg/m3 | 43.7 | 31.4 | 40.9 | 31.6 | 31.5 | 25 |
Difference | % | −9.3 | 7.6 | −9.1 | 0.5 | −5.0 | 2.3 |
Series: | Parameters | PM10 | PM2.5 | PM1 | H2S | SO2 | VOC |
---|---|---|---|---|---|---|---|
Unit | μg/m3 | μg/m3 | μg/m3 | [ppm] | [ppm] | [ppm] | |
A | max | 66.5 | 54.2 | 54.2 | 0.1580 | 0.7070 | 0.0020 |
average | 52.2 | 41.0 | 40.3 | 0.0235 | 0.0206 | 0.0003 | |
min | 30.9 | 25.1 | 25.0 | <min | <min | <min | |
95-perc | 63.6 | 52.1 | 51.4 | 0.1110 | 0.1530 | 0.0010 | |
5-perc | 40.7 | 29.5 | 28.6 | <min | <min | <min | |
B | max | 61.6 | 54.6 | 54.6 | 0.1580 | 0.7070 | 0.0020 |
average | 48.4 | 41.2 | 40.6 | 0.0235 | 0.0194 | 0.0003 | |
min | 28.4 | 25.3 | 25.2 | <min | <min | <min | |
95-perc | 58.9 | 52.4 | 51.8 | 0.1110 | 0.1530 | 0.0010 | |
5-perc | 37.7 | 29.7 | 28.8 | <min | <min | <min | |
C | max | 38.4 | 32.3 | 31.9 | 0.3280 | 0.8510 | 0.0030 |
average | 32.5 | 27.2 | 26.5 | 0.1172 | 0.0425 | 0.0010 | |
min | 20.6 | 10.3 | 8.6 | 0.0030 | <min | 0.0010 | |
95-perc | 36.3 | 31.5 | 31.0 | 0.2030 | 0.1460 | 0.0010 | |
5-perc | 28.7 | 21.6 | 20.7 | 0.0320 | <min | 0.0010 |
Series: | Parameters | PM10 | PM2.5 | PM1 | H2S | SO2 | VOC |
---|---|---|---|---|---|---|---|
Unit | μg/m3 | μg/m3 | μg/m3 | [ppm] | [ppm] | [ppm] | |
A | max | 88.6 | 75.3 | 75.1 | 0.2110 | 0.9940 | 0.0110 |
average | 57.2 | 48.6 | 48.0 | 0.0387 | 0.1993 | 0.0022 | |
min | 15.1 | 12.9 | 12.9 | 0.0010 | 0.0020 | 0.0005 | |
95-perc | 82.8 | 70.4 | 70.2 | 0.1361 | 0.4951 | 0.0070 | |
5-perc | 23.0 | 19.5 | 18.8 | 0.0043 | 0.0319 | 0.0005 | |
B | max | 55.5 | 49.9 | 49.2 | 0.0910 | 0.4610 | 0.0140 |
average | 38.5 | 30.8 | 30.1 | 0.0288 | 0.0993 | 0.0019 | |
min | 12.2 | 5.5 | 4.8 | 0.0010 | 0.0010 | 0.0010 | |
95-perc | 54.2 | 46.3 | 45.8 | 0.0570 | 0.3800 | 0.0050 | |
5-perc | 19.2 | 8.7 | 7.5 | 0.0039 | 0.0010 | 0.0010 | |
C | max | 43.7 | 37.1 | 36.8 | 0.1050 | 0.3990 | 0.0160 |
average | 36.6 | 28.7 | 27.9 | 0.0395 | 0.1218 | 0.0035 | |
min | 25.2 | 12.8 | 12.8 | 0.0010 | 0.0040 | 0.0010 | |
95-perc | 41.0 | 35.1 | 34.6 | 0.0750 | 0.1894 | 0.0110 | |
5-perc | 31.2 | 21.3 | 19.6 | 0.0040 | 0.0340 | 0.0010 |
PM10 | PM2.5 | PM1 | H2S | SO2 | VOC | |
---|---|---|---|---|---|---|
Series A | ||||||
PM10 | 1.00 | 0.98 | 0.98 | 0.07 | 0.11 | 0.27 |
PM2.5 | 0.98 | 1.00 | 1.00 | 0.02 | 0.07 | 0.25 |
PM1 | 0.98 | 1.00 | 1.00 | 0.02 | 0.08 | 0.24 |
H2S | 0.07 | 0.02 | 0.02 | 1.00 | 0.73 | −0.17 |
SO2 | 0.11 | 0.07 | 0.08 | 0.73 | 1.00 | −0.14 |
VOC | 0.27 | 0.25 | 0.24 | −0.17 | −0.14 | 1.00 |
Series B | ||||||
PM10 | 1.00 | 0.93 | 0.92 | 0.05 | 0.32 | 0.10 |
PM2.5 | 0.93 | 1.00 | 1.00 | 0.08 | 0.39 | 0.21 |
PM1 | 0.92 | 1.00 | 1.00 | 0.08 | 0.40 | 0.20 |
H2S | 0.05 | 0.08 | 0.08 | 1.00 | 0.16 | 0.23 |
SO2 | 0.32 | 0.39 | 0.40 | 0.16 | 1.00 | 0.61 |
VOC | 0.10 | 0.21 | 0.20 | 0.23 | 0.61 | 1.00 |
Series C | ||||||
PM10 | 1.00 | 0.70 | 0.68 | −0.06 | −0.13 | 0.41 |
PM2.5 | 0.70 | 1.00 | 0.99 | −0.02 | 0.01 | 0.22 |
PM1 | 0.68 | 0.99 | 1.00 | −0.03 | 0.02 | 0.22 |
H2S | −0.06 | −0.02 | −0.03 | 1.00 | 0.43 | −0.37 |
SO2 | −0.13 | 0.01 | 0.02 | 0.43 | 1.00 | −0.13 |
VOC | 0.41 | 0.22 | 0.22 | −0.37 | −0.13 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cichowicz, R.; Dobrzański, M. 3D Spatial Analysis of Particulate Matter (PM10, PM2.5 and PM1.0) and Gaseous Pollutants (H2S, SO2 and VOC) in Urban Areas Surrounding a Large Heat and Power Plant. Energies 2021, 14, 4070. https://doi.org/10.3390/en14144070
Cichowicz R, Dobrzański M. 3D Spatial Analysis of Particulate Matter (PM10, PM2.5 and PM1.0) and Gaseous Pollutants (H2S, SO2 and VOC) in Urban Areas Surrounding a Large Heat and Power Plant. Energies. 2021; 14(14):4070. https://doi.org/10.3390/en14144070
Chicago/Turabian StyleCichowicz, Robert, and Maciej Dobrzański. 2021. "3D Spatial Analysis of Particulate Matter (PM10, PM2.5 and PM1.0) and Gaseous Pollutants (H2S, SO2 and VOC) in Urban Areas Surrounding a Large Heat and Power Plant" Energies 14, no. 14: 4070. https://doi.org/10.3390/en14144070
APA StyleCichowicz, R., & Dobrzański, M. (2021). 3D Spatial Analysis of Particulate Matter (PM10, PM2.5 and PM1.0) and Gaseous Pollutants (H2S, SO2 and VOC) in Urban Areas Surrounding a Large Heat and Power Plant. Energies, 14(14), 4070. https://doi.org/10.3390/en14144070