The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland
Abstract
:1. Introduction
- -
- The current role of RES in balancing the total energy production in the regions;
- -
- The possibilities for increasing energy production from these sources in individual regions of Poland;
- -
- The current balance of energy production and consumption in each region;
- -
- The status and potential for development of energy production: wind, hydro, biogas, biomass and photovoltaic;
- -
- The potential for energy generation (energy density) from RES per hectare of nonurbanised land (including agricultural land and forests) and per capita.
2. Materials and Methods
2.1. Calculation of Small Hydropower Potential
2.2. Calculation of Wind Energy Potential
2.3. Methods for Calculating Solar Energy Potential
2.4. Calculation of Biogas Potential
2.5. Calculation of Biomass Potential
- -
- One hectare of forest may yield 45 tonnes of wood, this amount is assumed for 1% of the forest area, furthermore it is assumed that 12 tonnes of wood may be harvested from one hectare of forest from pre-cutting and tending cuts, and this amount refers to 5% of the forest area.
- -
- For every 100 m3 of wood mass harvested in the forest, after deducting 36 m3 of sawn wood for finished wood products, it is assumed that the remaining 64 m3 of wood mass can be used for energy purposes.
2.6. Ranking of Voivodships
3. Results
3.1. Small Hydropower Potential
3.2. Wind Energy Potential
3.3. Solar Energy Potential
3.4. Biogas Potential
3.5. Solid Biomass Potential
3.6. Total Potential of Renewable Sources
3.7. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Owusu, P.A.; Asumadu-Sarkodie, S.A. review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3. [Google Scholar] [CrossRef]
- Maśloch, P.; Maśloch, G.; Kuźmiński, Ł.; Wojtaszek, H.; Miciuła, I. Autonomous energy regions as a proposed choice of selecting selected EU regions—Aspects of their creation and management. Energies 2020, 13, 6444. [Google Scholar] [CrossRef]
- IEO. U.S. Energy Information Administration’s International Energy Outlook 2020. Center for Strategic and International Studies. Independent Statistics & Analysis, U.S. Energy Information Administration. 2020. Available online: www.iea.gov (accessed on 12 March 2021).
- Gradziuk, P.; Gradziuk, B. Renewable energy sources as a development opportunity for peripheral areas. Econ. Reg. Stud. 2020, 13, 184–196. [Google Scholar]
- Zou, C.; Zhao, Q.; Zhang, G.; Xiong, B. Energy revolution: From a fossil energy era to a new energy era. Nat. Gas Ind. B 2016, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sonter, L.J.; Dade, M.C.; Watson, J.E.M.; Valenta, R.K. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 2020, 11, 4174. [Google Scholar] [CrossRef]
- Johnsson, F.; Kjärstad, J.; Rootzén, J. The threat to climate change mitigation posed by the abundance of fossil fuels. Clim. Policy 2019, 19, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Perera, F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. Int. J. Environ. Res. Public Health 2017, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Greenstone, M.; Reguant, M.; Ryan, N.; Dobermann, T. Energy and Environment; Evidence Paper; International Growth Centre, University of Oxford: Oxford, UK, 2019. [Google Scholar]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Herington, M.J.; van de Fliert, E.; Smart, S.; Greig, C.; Lant, P.A. Rural energy planning remains out-of-step with contemporary paradigms of energy access and development. Renew. Sustain. Energy Rev. 2017, 67, 1412–1419. [Google Scholar] [CrossRef]
- Akhtar, S.; Zahedi, K.; Liu, H. Regional Cooperation for Sustainable Energy in Asia and the Pacific; ESCAP, United Nations: Bangkok, Thailand, 2017. [Google Scholar]
- Ford, R.; Maidment, C.; Fell, M.; Vigurs, C.; Morris, R. A Framework for Understanding and Conceptualising Smart Local Energy Systems. Energy REV; University of Strathclyde Publishing: Strathclyde, UK, 2019; pp. 1–18. [Google Scholar]
- Omer, A.M. Energy use and environmental impacts: A general review. J. Renew. Sustain. Energy 2009, 1, 053101. [Google Scholar] [CrossRef]
- IRENA. Innovation Landscape for a Renewable-Powered Future: Solutions to Integrate Variable Renewables; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Plich, M.; Skrzypek, J. Trendy Energochłonności Polskiej Gospodarki. Wiadomości Stat. Pol. Stat. 2016, 16–38. [Google Scholar] [CrossRef]
- Clinch, P. Cost–benefit analysis applied to energy. Encycl. Energy 2004, 1, 715–725. [Google Scholar] [CrossRef]
- Sharma, B.; Ingalls, R.G.; Jones, C.L.; Khanchi, A. Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future. Renew. Sustain. Energy Rev. 2013, 24, 608–627. [Google Scholar] [CrossRef]
- Dampier, J.E.E.; Lemelin, R.H.; Shahi, C.; Luckai, N. Small town identity and history’s contribution to a response in policy change: A case study of transition from coal to biomass energy conversion. Energy Sustain. Societ. 2014, 4, 1–14. [Google Scholar] [CrossRef]
- Famielec, J.; Kijanka, A.; Żaba-Nieroda, R. Economic growth and carbon dioxide emissions. Pol. Stat. Stat. Pract. 2019, 64, 5–21. [Google Scholar] [CrossRef]
- Gradziuk, P. Innowacje organizacyjne w bioenergetyce. In Bioenergetyka Podkarpacka. Innowacje Technologiczne i Organizacyjne w Podkarpackiej Bioenergetyce; Kościk, B., Ed.; Wydawnictwo Naukowe Państwowej Wyższej Szkoły Zawodowej im. ks. Bronisława Markiewicza w Jarosławiu: Jaroslaw, Poland, 2007; pp. 215–233. [Google Scholar]
- Maśloch, G. Budowa autonomicznych regionów energetycznych w Polsce—Utopia czy konieczność? Studia Prawno Ekon. 2018, CVI, 251–256. [Google Scholar]
- Statistics Poland. Rural Areas in Poland in 2018. Statistical Analyses; Statistics Poland: Warszawa, Olsztyn, 2020.
- Wójcik, M. Non-agricultural economic functions of rural areas in the Łódzkie Voivodship (1999–2009). Reg. Barom. Anal. Progn. 2013, 2, 43–50. [Google Scholar]
- Sima, E. Non-agricultural activities in the economic development of the Romanian rural area. In Proceedings of the Agrarian Economy and Rural Development—Realities and Perspectives for Romania. In Proceedings of the 6th Edition of the International Symposium, ICEADR, Bucharest, Romania, 19 November 2015; pp. 390–395. [Google Scholar]
- Kiciński, J. Autonomiczne Regiony Energetyczne (ARE)—Szansa Dla Polskiej Wsi, Instytut Maszyn Przepływowych PAN w Gdańsku, Uniwersytet Warmińsko-Mazurski w Olsztynie. Available online: https://docplayer.pl/13433401-Autonomiczne-regiony-energetyczne-are-szansa-dla-polskiej-wsi.html (accessed on 19 April 2021).
- Benedek, J.; Sebestyén, T.-T.; Bartók, B. Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development. Renew. Sustain. Energy Rev. 2018, 90, 516–535. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Off. J. Eur. Union 2018, L 328/82, 1–128. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN (accessed on 20 March 2021).
- Benasla, M.; Hess, D.; Allaoui, T.; Brahami, M.; Denaï, M. The transition towards a sustainable energy system in Europe: What role can North Africa’s solar resources play? Energy Strategy Rev. 2019, 24, 1–13. [Google Scholar] [CrossRef]
- Müller, S.; Brown, A.; Ölz, S. Renewable Energy Policy Considerations for Deploying Renewables; Information Paper; OECD/IEA: Paris, France, 2011. [Google Scholar]
- Marchenko, O.; Solomin, S. Economic efficiency of renewable energy sources in autonomous energy systems in Russia. Int. J. Renew. Energy Res. 2014, 4, 548–554. [Google Scholar]
- Blazquez, J.; Fuentes-Bracamontes, R.; Bollino, C.A.; Nezamuddin, N. The renewable energy policy Paradox. Renew. Sustain. Energy Rev. 2018, 82, 1–5. [Google Scholar] [CrossRef]
- Marks-Bielska, R.; Bielski, S.; Pik, K.; Kurowska, K. The Importance of renewable energy sources in Poland’s energy mix. Energies 2020, 13, 4624. [Google Scholar] [CrossRef]
- Matyka, M. Rolnictwo a Odnawialne Źródła Energii—Szanse i Zagrożenia; Zegar, J.S., Ed.; Z Badań Nad Rolnictwem Społecznie Zrównoważonym. No 11; Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej: Warsaw, Poland, 2011; pp. 95–120. [Google Scholar]
- Wang, Y.; Zhang, D.; Ji, Q.; Shi, X. Regional renewable energy development in China: A multidimensional assessment. Renew. Sustain. Energy Rev. 2020, 124, 109797. [Google Scholar] [CrossRef]
- Ślusarz, G.; Gołębiewska, B.; Cierpiał-Wolan, M.; Gołębiewski, J.; Twaróg, D.; Wójcik, S. Regional diversification of potential, production and efficiency of use of biogas and biomass in Poland. Energies 2021, 14, 742. [Google Scholar] [CrossRef]
- Jezierski, G. Elektrownia Jądrowa a Konwencjonalna. Energetyka Ciepl. Zawodowa 2009, 10, 1–12. Available online: https://www.cire.pl/pliki/2/jadrowa_a_konwencjonalna.pdf (accessed on 25 April 2021).
- Maciejczak, M.; Zakharov, K. Public goods as a source of rural development. In Proceedings of the International Conference Development Prospects of Rural Areas Lagging Behind in the CEE Region, Szent Istvan University, Godollo, Hunagry, 24–26 May 2011. [Google Scholar]
- Santos, J.L.; Madureirab, L.; Ferreirab, A.C.; Espinosac, M.; Gomez y Paloma, S. Building an empirically- based framework to value multiple public-goods of agriculture at broad supranational scales. Land Use Policy 2016, 53, 56–70. [Google Scholar] [CrossRef]
- Plantinga, A.J.; Miller, D. Agricultural land values and future development. Land Econ. 2001, 77, 56–67. [Google Scholar] [CrossRef]
- Koryś, K.A.; Latawiec, A.E.; Grotkiewicz, K.; Kuboń, M. The review of biomass potential for agricultural biogas production in Poland. Sustainability 2019, 11, 6515. [Google Scholar] [CrossRef] [Green Version]
- Kukuła, K. Dynamika produkcji energii elektrycznej wykorzystującej źródła energii odnawialnej. Wiadomości Stat. Pol. Stat. 2015, 12, 58–69. [Google Scholar]
- Kowalczyk, K.; Cieśliński, R. Analiza potencjału hydroenergetycznego oraz możliwości jego wykorzystania w województwie pomorskim. Woda Sr. Obsz. Wiej. 2018, 18, 69–86. [Google Scholar]
- Jarosz, Z. Potencjał energetyczny biomasy roślinnej i możliwości wykorzystania do celów energetycznych. Probl. Rol. Swiat. Probl. World Agric. 2017, 17, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Cogeneration, European Biomass Industry Association. 2021. Available online: https://www.eubia.org/cms/wiki-biomass/combustion/cogeneration (accessed on 16 May 2021).
- Sprawozdanie Bilansowe Nośników Energii i Infrastruktury Ciepłowniczej. Available online: http://form.stat.gov.pl/formularze/2018/passive/G-02b.pdf (accessed on 25 April 2021).
- Available online: https://eref-europe.org/restor-hydro-database/ (accessed on 25 April 2021).
- Blok, M.; Tomaszewska, B. Ocena potencjału technicznego wybranej MEW w powiecie rzeszowskim (Evaluation of the Technical Potential of a Selected Small Hydropower Plant in The Rzeszów District). Geol. Explor. Technol. Geotherm. Energy Sustain. Dev. 2015, 2, 61–78. [Google Scholar]
- Bujakowski, W.; Barbacki, A.; Grzybek, A.; Hołojuch, G.; Pająk, L.; Skoczek, A.; Skrzypczak, M.; Skrzypczak, S. Opracowanie Metody Programowania i Modelowania Systemów Wykorzystania Odnawialnych Źródeł Energii na Terenach Nieprzemysłowych Województwa Śląskiego, wraz z Programem Wykonawczym dla Wybranych Obszarów Województwa; Część I: Metodyka Opracowania; Instytut Gospodarki Surowcami Mineralnymi i Energią PAN: Kraków, Poland; Katowice, Piland, 2005. [Google Scholar]
- Filipowicz, M.; Żołądek, M.; Ochalik, J. Potencjał Rozwoju i Problemy Energetyki Wiatrowej (Growth Potential and Problems in Development of Wind Energy). Rynek Instal. 2020, 1–2. Available online: http://www.rynekinstalacyjny.pl/artykul/id4944 (accessed on 25 April 2021).
- PSEW. Analiza Krajowego Planu na Rzecz Energii i Klimatu na Lata 2021–2030 z Dnia 30 Grudnia 2019 r. Polskie Stowarzyszenie Energetyki Wiatrowej. 2019. Available online: http://psew.pl/wp-content/uploads/2020/06/Analiza-KPEiK_PSEW.pdf (accessed on 25 April 2021).
- Energetyka Wiatrowa. 2021. Available online: https://globenergia.pl/ (accessed on 20 May 2021).
- Stolińska, B. The factors of wind turbines location. World Real Estate J. 2014, 88, 27–31. [Google Scholar]
- Dragusha, B.; Hoxha, B. Impact of field roughness and power losses, turbulence intensity on electricity production for an onshore wind farm. Int. J. Power Electron. Drive Syst. 2020, 11, 1519–1526. [Google Scholar] [CrossRef]
- Dz.U. 2016 Poz. 961, Ustawa z Dnia 20 Maja 2016 r. o Inwestycjach w Zakresie Elektrowni Wiatrowych. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20160000961/U/D20160961Lj.pdf (accessed on 27 March 2021).
- Voicescu, S.A.; Michaud, D.S.; Feder, K.; Marro, L.; Than, J.; Guay, M.; Denning, A.; Bower, T.; van den Berg, F.; Broner, N.; et al. Estimating annoyance to calculated wind turbine shadow flicker is improved when variables associated with wind turbine noise exposure are considered. J. Acoust. Soc. Am. 2016, 139, 1480–1492. [Google Scholar] [CrossRef] [Green Version]
- Pantazopoulou, P. Wind turbine noise measurements and abatement methods. WIT Trans. State Art Sci. Eng. 2010, 44, 621–659. [Google Scholar] [CrossRef] [Green Version]
- Botelho, A.; Arezes, P.; Bernardo, C.; Dias, H.; Pinto, L.M.C. Effect of wind farm noise on local residents’ decision to adopt mitigation measures. Int. J. Environ. Res Public Health 2017, 14, 753. [Google Scholar] [CrossRef] [Green Version]
- Díaz, K.M.A.; Velarde-Suárez, S.; Oro, J.M.F.; Perez, J.G. Simplified assessment on the wind farm noise impact of the E2O experimental offshore station in the Asturian coast. Energies 2020, 13, 5788. [Google Scholar] [CrossRef]
- Kozłowska-Szczęsna, T. Promieniowanie, Temperatura Powietrza, Główny Geodeta Kraju, Warszawa 1994. In Atlas Rzeczypospolitej Polskiej. Cz.2. Warszawa: Główny Geodeta Kraju. 1994. Available online: https://www.igipz.pan.pl/mapy-all.html (accessed on 3 April 2021).
- Tytko, R. Urządzenia i Systemy Energetyki Odnawialnej, Wyd; Towarzystwo Słowaków w Polsce: Krakow, Poland, 2013. [Google Scholar]
- Available online: https://www.gum.gov.pl/pl/transfer-wiedzy/inne/mapy-godzin-wschodu-i-z/2652,Mapy-godzin-wschodu-i-zachodu-slonca-w-Polsce.html (accessed on 1 April 2021).
- Mirowski, T.; Sornek, K. Potencjał energetyki prosumenckiej w Polsce na przykładzie mikroinstalacji fotowoltaicznych w budownictwie indywidualnym. Energy Policy J. 2015, 18, 73–85. [Google Scholar]
- Thompson, E.P.; Bombelli, E.L.; Shubham, S.; Watson, H.; Everard, A.; D’Ardes, V.; Schievano, A.; Bocchi, S.; Zand, N.; Howe, C.J.; et al. Tinted semi-transparent solar panels allow concurrent production of crops and electricity on the same cropland. Adv. Energy Mater. 2020, 10, 1–9. [Google Scholar]
- Available online: https://bdl.stat.gov.pl/BDL/start (accessed on 19 April 2021).
- Wiśniewski, G. (Ed.) Odnawialne Źródła Energii Jako Element Rozwoju Lokalnego; Europejskie Centrum Energii Odnawialnej; EC BREC: Warszawa, Poland, 2003. [Google Scholar]
- Wąs, A.; Sulewski, P.; Krupin, V.; Popadynets, N.; Malak-Rawlikowska, A.; Szymańska, M.; Wysokiński, M. The potential of agricultural biogas production in Ukraine—Impact on GHG emissions and energy production. Energies 2020, 13, 5755. [Google Scholar] [CrossRef]
- Walczak, J.; Krawczyk, W.; Szewczyk, A.; Mazur, D.; Pająk, T.; Radecki, P. Oszacowanie Wielkości Produkcji Oraz Jednostkowej Zawartości Azotu Nawozów Naturalnych, Powstałych w Różnych Systemach Utrzymania Zwierząt Gospodarskich w Polsce; Instytut Zootechniki Państwowy Instytut Badawczy: Kraków, Poland, 2012; p. 17. [Google Scholar]
- Kołodziejak, G. Możliwości wykorzystania potencjału energetycznego biogazu powstającego w trakcie procesu oczyszczania ścieków. Analiza opłacalności proponowanych rozwiązań. Naft. Gaz 2012, 12, 1036–1043. [Google Scholar]
- Cherevko, G. Rapeseed growing for energy purposes in Ukraine. Rocz. Nauk. Stowarzyszenia Ekon. Rol. Agrobiz. 2016, 18, 29–34. [Google Scholar]
- Gradziuk, P. Potencjał i prognozy wykorzystania biogazu rolniczego w Polsce. Potential and forecast for use of agricultural biogas in Poland. Rocz. Nauk. Stowarzyszenia Ekon. Rol. Agrobiz. 2017, 19, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/uprawy-rolne-i-ogrodnicze/produkcja-upraw-rolnych-i-ogrodniczych-w-2018-roku,9,17.html (accessed on 18 April 2021).
- Martinát, S.; Dvořák, P.; Frantál, B.; Klusáček, P.; Kunc, J.; Kulla, M.; Mintálová, T.; Navrátil, J.; van der Horst, D. Spatial consequences of biogas production and agricultural changes in the Czech Republic after EU accession: Mutual symbiosis, coexistence or parasitism? AUPO Geogr. 2013, 44, 75–92. [Google Scholar]
- Bharathirajaa, B.; Sudharsanaa, T.; Jayamuthunagaib, J.; Praveenkumarc, R.; Chozhavendhand, S.; Iyyappan, J. Biogas production—A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew. Sustain. Energy Rev. 2018, 90, 570–582. [Google Scholar] [CrossRef]
- Ludwicka, A.; Grzybek, A. Bilans masy rolnej (słomy) na potrzeby energetyki (Balance of the agricultural biomass (straw) for energy purposes). Probl. Inż. Rol. Probl. Agric. Eng. 2010, 2, 101–110. [Google Scholar]
- Gradziuk, P. Gospodarcze Znaczenie i Możliwości Wykorzystania słomy na Cele Energetyczne w Polsce; Monografie i Rozprawy naukowe nr. 45, Wyd; Instytutu Uprawy, Nawożenia i Gleboznawstwa—Państwowy Instytut Badawczy w Puławach/Institute of Soil Science and Plant Cultivationstate Research Institute: Puławy, Poland, 2015; p. 176. [Google Scholar]
- Hrynkiewicz, M.; Grzybek, A. Nadwyżka słomy dostępnej do wykorzystania na potrzeby energetyczne w 2016 r. Probl. Inżynierii Rol. 2017, 3, VII–IX. [Google Scholar]
- Pudełko, R. Ocena potencjału biomasy ubocznej z rolnictwa w UE. Nowa Energ. 2013, 4, 44–47. [Google Scholar]
- Koprowicz, A. Planowanie Bilansu Paszowego w Gospodarstwach Mlecznych; MPODR: Karniowice, Poland, 2016. [Google Scholar]
- ARiMR-Agencja Restrukturyzacji i Modernizacji Rolnictwa. Available online: https://www.arimr.gov.pl/ (accessed on 4 April 2021).
- Kuś, J.; Faber, A. Alternatywne kierunki produkcji rolniczej. Studia Rap. IUNG-PIB Puławy 2007, 7, 138–158. [Google Scholar]
- Kołodziej, A.; Matyka, M. Odnawialne Źródła Energii. Rolnicze Surowce Energetyczne; PWRiL: Poznan, Poland, 2012; p. 594. [Google Scholar]
- Han, S.H.; Shin, S.J.; Kim, B.R.; Aggangan, N.S.; Yun, C.W. Growth chemical composition and energy contents of seven clones of one-year-old Salix caprea L. as short rotation cappice. Asia Life Sci. 2013, 22, 413–426. [Google Scholar]
- Lach, A.; Dyjakon, A.; Noszczyk, T. Sady jabłoniowe jako lokalne źródło biomasy do ogrzewania gospodarstw domowych w Województwie Mazowieckim (Apple orchards as a source of local biomass for households heating in the Mazowieckie Voivodeship). In Rolnictwo XXI Wieku—Problemy i Wyzwania; Łuczycka, D., Ed.; Idea Knowledge Future: Wroclaw, Poland, 2018; pp. 528–539. [Google Scholar]
- Pavić, Z.; Novoselac, V. Notes on TOPSIS Method. Int. J. Res. Eng. Sci. 2013, 1, 5–12. [Google Scholar]
- Wysocki, F. Metody Taksonomiczne w Rozpoznawaniu Typów Ekonomicznych Rolnictwa i Obszarów Wiejskich; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2010. [Google Scholar]
- EC 2021. Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 18 April 2021).
- Igliński, B. Hydro energy in Poland: The history, current state, potential, SWOT analysis, environmental aspects. Int. J. Energy Water Resour. 2019, 3, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Kowalczak, P. Hierarchia Potrzeb Obszarowych Małej Retencji w Dorzeczu Warty; Instytut Meteorologii i Gospodarki Wodnej: Warsaw, Poland, 2001. [Google Scholar]
- Kudlicki, Ł. Zagrożenie Pustynnieniem w Polsce. Bezpieczeństwo Nar. 2006, 1, 201–211. Available online: https://www.bbn.gov.pl (accessed on 21 April 2021).
- Watson, S.; Moro, A.; Reis, V.; Baniotopoulos, C.; Barth, S.; Bartoli, G.; Wiser, R. Future emerging technologies in the wind power sector: A European perspective. Renew. Sustain. Energy Rev. 2019, 113, 109270. [Google Scholar] [CrossRef]
- Available online: https://www.tauron-wytwarzanie.pl/innowacje/co2-sng (accessed on 23 April 2021).
- Leahy, M.J.; Connolly, D.; Buckley, D.N. Wind energy storage technologies. WIT Trans. State Art Sci. Eng. 2010, 44, 621–714. [Google Scholar] [CrossRef]
- Nsair, A.; Cinar, S.O.; Alassali, A.; Abu Qdais, H.; Kuchta, K. Operational parameters of biogas plants: A review and evaluation study. Energies 2020, 13, 3761. [Google Scholar] [CrossRef]
- Sefeedpari, P.; Pudełko, R.; Jędrejek, A.; Kozak, M.; Borzęcka, M. To what extent is manure produced, distributed, and potentially available for bioenergy? A step toward stimulating circular bio-economy in Poland. Energies 2020, 13, 6266. [Google Scholar] [CrossRef]
- Wiśniewski, G. (Ed.) Określenie Potencjału Energetycznego Regionów Polski w Zakresie Odnawialnych Źródeł Energii—Wnioski dla Regionalnych Programów Operacyjnych na Okres Programowania 2014–2020; Ministerstwo Rozwoju Regionalnego: Warsaw, Poland, 2011.
- Borzęcki, K.; Pudełko, R.; Kozak, M.; Borzęcka, M.; Faber, A. Spatial distribution of wood waste in Europe. Sylwan 2018, 162, 563–571. [Google Scholar]
- Hartmann, B.; Talamon, A.; Sugár, V. Renewable energy potentials in the administrative regions of Hungary. Strateg. Plan. Energy Environ. 2017, 37, 33–57. [Google Scholar] [CrossRef]
- Potić, I.; Joksimović, T.; Milinčić, U.; Kićović, D.; Milinčić, M. Wind energy potential for the electricity production—Knjaževac Municipality case study (Serbia). Energy Strategy Rev. 2021, 33, 100589. [Google Scholar] [CrossRef]
- Godlewska-Majkowska, H.; Komor, A. Energy as a factor of investment attractiveness of regions for agricultural enterprises. Energies 2021, 14, 2731. [Google Scholar] [CrossRef]
- Scaramuzzino, C.; Garegnani, G.; Zambelli, P. Integrated approach for the identification of spatial patterns related to renewable energy potential in European territories. Renew. Sustain. Energy Rev. 2019, 101, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Mortazavi, S.M.; Maleki, A.; Aslani, A.; Yousefi, H. Analysis of the robustness of energy supply in Japan: Role of renewable energy. Energy Rep. 2020, 6, 378–391. [Google Scholar] [CrossRef]
- Islam, M.A.; Hasanuzzaman, M.; Rahim, N.A.; Nahar, A.; Hosenuzzaman, M. Global renewable energy-based electricity generation and smart grid system for energy security. Sci. World J. 2014, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mardani, A.; Streimikiene, D.; Balezentis, T.; Saman, M.; Nor, K.M.; Khoshnava, S. Data envelopment analysis in energy and environmental economics: An overview of the state-of-the-art and recent development trends. Energies 2018, 11, 2002. [Google Scholar] [CrossRef] [Green Version]
- Available online: file:///C:/Users/p138602/AppData/Local/Temp/2020-EurObserv_ER-biogas-barometer-GB-20201215.pdf (accessed on 16 April 2021).
- Available online: https://powermeetings.eu/konferencja/forum-biomasy/wp-content/uploads/sites/19/2017/04/06-Rafal-Domaszewski-Enea.pdf (accessed on 8 April 2021).
Voivodships | RES Potential [GWh/Year] | Share of RES Potential in Total Consumption [%] | ||||||
---|---|---|---|---|---|---|---|---|
WWS (Water + Wind + Sun) | Bg (Biogas) | Bm (Biomass) | WWSBgBm (Water + Wind + Sun + Biogas + Biomass) | WWS/Total Consumption | Bg/Total Consumption | Bm/Total Consumption | WWSBgBm Total Consumption | |
Dolnośląskie | 358.75 | 660.31 | 3656.89 | 4675.94 | 3.45 | 6.35 | 35.16 | 44.95 |
Kujawsko-Pomorskie | 1012.58 | 1011.20 | 2758.11 | 4781.89 | 15.78 | 15.76 | 42.98 | 74.52 |
Lubelskie | 1412.84 | 705.21 | 3398.27 | 5516.32 | 26.67 | 13.31 | 64.16 | 104.15 |
Lubuskie | 1373.73 | 295.40 | 2694.20 | 4363.33 | 46.63 | 10.03 | 91.44 | 148.10 |
Łódzkie | 2027.25 | 1000.05 | 2126.65 | 5153.95 | 24.82 | 12.24 | 26.04 | 63.10 |
Małopolskie | 340.43 | 745.80 | 1828.58 | 2914.80 | 3.41 | 7.46 | 18.29 | 29.16 |
Mazowieckie | 2015.53 | 2298.34 | 5157.81 | 9471.68 | 8.01 | 9.14 | 20.51 | 37.66 |
Opolskie | 405.93 | 362.03 | 1833.81 | 2601.76 | 11.65 | 10.39 | 52.62 | 74.65 |
Podkarpackie | 4969.47 | 351.82 | 3585.95 | 8907.23 | 123.66 | 8.75 | 89.23 | 221.65 |
Podlaskie | 2140.90 | 1328.49 | 2145.55 | 5614.95 | 85.37 | 52.97 | 85.55 | 223.90 |
Pomorskie | 3259.70 | 642.14 | 5198.66 | 9100.50 | 48.79 | 9.61 | 77.80 | 136.20 |
Śląskie | 389.06 | 711.06 | 1774.33 | 2874.45 | 1.99 | 3.64 | 9.07 | 14.70 |
Świętokrzyskie | 240.87 | 335.64 | 1536.30 | 2112.81 | 5.90 | 8.22 | 37.63 | 51.75 |
Warmińsko-Mazurskie | 3238.66 | 797.55 | 3405.22 | 7441.43 | 113.00 | 27.83 | 118.81 | 259.64 |
Wielkopolskie | 2542.59 | 2147.49 | 4006.33 | 8696.40 | 25.40 | 21.45 | 40.01 | 86.86 |
Zachodniopomorskie | 3353.21 | 493.99 | 4053.75 | 7900.95 | 80.61 | 11.88 | 97.45 | 189.93 |
Poland | 29,081.50 | 13,886.49 | 49,160.41 | 92,128.40 | 23.12 | 11.04 | 39.10 | 73.27 |
Voivodships | Year 2018 | Unleashing the Full Potential | Current Utilisation of RES Potential [%] | ||||
---|---|---|---|---|---|---|---|
Energy Production from Renewable Energy Sources [GWh] | Topsis | Share of Renewable Energy in Electricity Consumption [%] | Sun, Wind, Water, Biogas, Biomass [GWh] | Topsis | Share of Renewable Energy in Electricity Consumption [%] | ||
Dolnośląskie | 644.3 | 14 | 6.02 | 4675.9 | 13 | 44.9 | 13.8 |
Kujawsko-Pomorskie | 3311.2 | 2 | 39.74 | 4781.9 | 11 | 74.5 | 69.2 |
Lubelskie | 473.3 | 16 | 8.29 | 5516.3 | 9 | 104.2 | 8.6 |
Lubuskie | 655.1 | 7 | 17.53 | 4363.3 | 5 | 148.1 | 15.0 |
Łódzkie | 1466.1 | 6 | 17.91 | 5153.9 | 10 | 63.1 | 28.5 |
Małopolskie | 413.1 | 15 | 3.25 | 2914.8 | 16 | 29.2 | 14.2 |
Mazowieckie | 1450.2 | 10 | 5.87 | 9471.7 | 8 | 37.7 | 15.3 |
Opolskie | 521.6 | 12 | 11.03 | 2601.8 | 12 | 74.7 | 20.1 |
Podkarpackie | 568.8 | 13 | 10.43 | 8907.2 | 1 | 221.7 | 6.4 |
Podlaskie | 717.5 | 11 | 23.49 | 5614.9 | 6 | 223.9 | 12.8 |
Pomorskie | 2104.2 | 4 | 27.44 | 9100.5 | 2 | 136.2 | 23.1 |
Śląskie | 803.1 | 9 | 3.96 | 2874.5 | 15 | 14.7 | 27.9 |
Świętokrzyskie | 1822.1 | 3 | 41.32 | 2112.8 | 14 | 51.8 | 86.2 |
Warmińsko-Mazurskie | 969.2 | 8 | 24.79 | 7441.4 | 4 | 259.6 | 13.0 |
Wielkopolskie | 2092.6 | 5 | 18.57 | 8696.4 | 7 | 86.9 | 24.1 |
Zachodniopomorskie | 3604.8 | 1 | 64.27 | 7900.9 | 3 | 189.9 | 45.6 |
Poland | 21,617.2 | x | 15.39 | 92,128.4 | x | 73.3 | 23.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ślusarz, G.; Gołębiewska, B.; Cierpiał-Wolan, M.; Twaróg, D.; Gołębiewski, J.; Wójcik, S. The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland. Energies 2021, 14, 4033. https://doi.org/10.3390/en14134033
Ślusarz G, Gołębiewska B, Cierpiał-Wolan M, Twaróg D, Gołębiewski J, Wójcik S. The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland. Energies. 2021; 14(13):4033. https://doi.org/10.3390/en14134033
Chicago/Turabian StyleŚlusarz, Grzegorz, Barbara Gołębiewska, Marek Cierpiał-Wolan, Dariusz Twaróg, Jarosław Gołębiewski, and Sebastian Wójcik. 2021. "The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland" Energies 14, no. 13: 4033. https://doi.org/10.3390/en14134033
APA StyleŚlusarz, G., Gołębiewska, B., Cierpiał-Wolan, M., Twaróg, D., Gołębiewski, J., & Wójcik, S. (2021). The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland. Energies, 14(13), 4033. https://doi.org/10.3390/en14134033