Next Article in Journal
Impacts of Electricity Outages in Urban Households in Developing Countries: A Case of Accra, Ghana
Previous Article in Journal
Chemical Degradation of the La0.6Sr0.4Co0.2Fe0.8O3−δ/Ce0.8Sm0.2O2−δ Interface during Sintering and Cell Operation
Article

Combining Baffles and Secondary Porous Layers for Performance Enhancement of Proton Exchange Membrane Fuel Cells

1
Croatian Defense Academy, Naval Studies, University of Split, 21000 Split, Croatia
2
Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, 21000 Split, Croatia
3
Center for Excellence for Science and Technology—Integration of Mediterranean Region, University of Split, 21000 Split, Croatia
4
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
5
Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang 212013, China
6
Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, 8010 Graz, Austria
*
Authors to whom correspondence should be addressed.
Academic Editor: Paloma Ferreira-Aparicio
Energies 2021, 14(12), 3675; https://doi.org/10.3390/en14123675
Received: 25 May 2021 / Revised: 15 June 2021 / Accepted: 18 June 2021 / Published: 20 June 2021
(This article belongs to the Section Hydrogen Energy)
A numerical study is conducted to compare the current most popular flow field configurations, porous, biporous, porous with baffles, Toyota 3D fine-mesh, and traditional rectangular flow field. Operation at high current densities is considered to elucidate the effect of the flow field designs on the overall heat transfer and liquid water removal. A comprehensive 3D, multiphase, nonisothermal computational fluid dynamics model is developed based on up-to-date heat and mass transfer sub-models, incorporating the complete formulation of the Forchheimer inertial effect and the permeability ratio of the biporous layers. The porous and baffled flow field improves the cell performance by minimizing mass transport losses, enhancing the water removal from the diffusion layers. The baffled flow field is chosen for optimization owing to the simple design and low manufacturing cost. A total of 49 configurations were mutually compared in the design of experiments to show the quantitative effect of each parameter on the performance of the baffled flow field. The results elucidate the significant influence of small geometry modifications on the overall heat and mass transfer. The results of different cases have shown that water saturation can be decreased by up to 33.59% and maximal temperature by 7.91 °C when compared to the reference case which is already characterized by very high performance. The most influencing geometry parameters of the baffles on the cell performance are revealed. The best case of the 49 studied cases is further optimized by introducing a linear scaling factor. Additional geometry modifications demonstrate that the gain in performance can be increased, but at a cost of higher pressure drop and increased design complexity. The conclusions of this work aids in the development of compact and high-performance proton exchange membrane fuel cell stacks. View Full-Text
Keywords: proton-exchange membrane fuel cells; computational fluid dynamics; Forchheimer inertial effect; biporous layer; baffle geometry optimization proton-exchange membrane fuel cells; computational fluid dynamics; Forchheimer inertial effect; biporous layer; baffle geometry optimization
Show Figures

Figure 1

MDPI and ACS Style

Mihanović, L.; Penga, Ž.; Xing, L.; Hacker, V. Combining Baffles and Secondary Porous Layers for Performance Enhancement of Proton Exchange Membrane Fuel Cells. Energies 2021, 14, 3675. https://doi.org/10.3390/en14123675

AMA Style

Mihanović L, Penga Ž, Xing L, Hacker V. Combining Baffles and Secondary Porous Layers for Performance Enhancement of Proton Exchange Membrane Fuel Cells. Energies. 2021; 14(12):3675. https://doi.org/10.3390/en14123675

Chicago/Turabian Style

Mihanović, Luka, Željko Penga, Lei Xing, and Viktor Hacker. 2021. "Combining Baffles and Secondary Porous Layers for Performance Enhancement of Proton Exchange Membrane Fuel Cells" Energies 14, no. 12: 3675. https://doi.org/10.3390/en14123675

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop