Sustainable Water-Energy Nexus towards Developing Countries’ Water Sector Efficiency
Abstract
:1. Introduction
2. Methods and Materials
2.1. Methodology
2.2. Renewable Energy Sources in the Water Sector
- more efficient irrigation practices;
- a reduction in the volumes of water volumes by leakage containment;
- a more efficient use of energy in the water transmission;
- a more sustainable use of water and energy in supply and sanitation;
- a new market of green technologies for the water sector;
- a new model for multiuse water management.
2.3. Water Sector Performance Indicators (PIs)
3. Case Study in Mozambique
3.1. Brief Background
3.2. Nampula Water Supply System
3.2.1. Model Development
3.2.2. Energy Recovery
3.2.3. Economic Viability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Atlantic area |
APDA | Associação Portuguesa de Distribuição e Drenagem de Águas (Water Distribution and Wastewater Sanitation Association) |
APREN | Associação Portuguesa de Energias Renováveis (Portuguese Association of Renewable Energies) |
B/C ratio | Benefit/xost ratio |
CCI | Characteristic curve of the installation |
CNR | Carbon Neutrality Roadmap |
CRA | Conselho de Regulação de Águas (Water Regulatory Board in Mozambique) |
DNASS | Direcção Nacional de Abastecimento de Água e Saneamento (National Directorate of Water Supply and Sanitation in Mozambique) |
EU | European Union |
ERSAR | Entidade Reguladora dos Serviços de Água e Resíduos (Portuguese Regulatory Entity for Water and Waste Services) |
FIPAG | Fundo de Investimento e Património de Abastecimento de Água (Water Supply Investment and Trust Fund in Mozambique) |
GDP | Gross domestic product |
GPV | General purpose valve |
GVA | Gross value added |
IRR | Internal rate of return |
MHP | Micro hydropower |
NECP | National Energy and Climate Plan |
NPVs | Net present values |
PI | Performance indicators |
PRVs | Pressure reduction valves |
PATs | Pumps-as-turbines |
RES | Renewable energy sources |
WSSs | Water supply systems |
References
- UNESCO. The United Nations World Water Development Report 2014—Water and Enegy; UNESCO: Paris, France, 2014. [Google Scholar]
- Hoff, H. Understanding the Nexus. In Proceedings of the Bonn2011 Nexus Conference: The Water, Energy and Food Security Nexus, Stockholm, Sweden, 16–18 November 2011; pp. 1–52. [Google Scholar]
- UNESCO. The United Nations World Water Development Report—Executive Summary; UNESCO: Paris, France, 2019. [Google Scholar]
- Carravetta, A.; Derakshan Houreh, S.; Ramos, H.M. Pump as Turbines: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Parra, S.; Krause, S.; Krönlein, F.; Günthert, F.W.; Klunke, T. Intelligent pressure management by pumps as turbines in water distribution systems: Results of experimentation. Water Sci. Technol. 2018, 18, 778–789. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Trochez, C.; Smout, I.; Kayaga, S. Incorporating energy use into the economic level of Leakage Model. In Proceedings of the World Wide Workshop for Young Environmental Scientists, Arcueil, France, 31 May–4 June 2010. [Google Scholar]
- Gomes, R.; Sá Marques, A.; Sousa, J. Identification of the optimal entry points at District Metered Areas and implementation of pressure management. Urban Water J. 2012, 9, 365–384. [Google Scholar] [CrossRef]
- Pérez-Padillo, J.; García Morillo, J.; Ramirez-Faz, J.; Roldán, M.T.; Montesinos, P. Design and implementation of a pressure monitoring system based on iot for water supply networks. Sensors 2020, 20, 4247. [Google Scholar] [CrossRef] [PubMed]
- Araujo, L.S.; Ramos, H.; Coelho, S.T. Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resour. Manag. 2006, 20, 133–149. [Google Scholar] [CrossRef]
- Vicente, D.J.; Garrote, L.; Sánchez, R.; Santillán, D. Pressure management in water distribution systems: Current status, proposals, and future trends. J. Water Resour. Plan. Manag. 2016, 142, 1–13. [Google Scholar] [CrossRef]
- Monsef, H.; Naghashzadegan, M.; Farmani, R.; Jamali, A. Pressure management in water distribution systems in order to reduce energy consumption and background leakage. J. Water Supply Res. Technol. AQUA 2018, 67, 397–403. [Google Scholar] [CrossRef]
- Nogueira Vilanova, R.M.; Perrella Balestieri, J.A. Energy and hydraulic efficiency in conventional water supply systems. Renew. Sustain. Energy Rev. 2014, 30, 701–714. [Google Scholar] [CrossRef]
- Ramos, H.; Borga, A. Application of pumps in water supply systems for energy production. Water Stud. 2000, 7, 101–108. [Google Scholar]
- Fecarotta, O.; Ramos, H.M.; Derakhshan, S.; Del Giudice, G.; Carravetta, A. Fine Tuning a PAT Hydropower Plant in a Water Supply Network to Improve System Effectiveness. J. Water Resour. Plan. Manag. 2018, 144, 04018038. [Google Scholar] [CrossRef]
- Lydon, T.; Coughlan, P.; McNabola, A. Pressure management and energy recovery in water distribution networks: Development of design and selection methodologies using three pump-as-turbine case studies. Renew. Energy 2017, 114, 1038–1050. [Google Scholar] [CrossRef]
- Fernández García, I.; Novara, D.; Mc Nabola, A. A Model for Selecting the Most Cost-Effective Pressure Control Device for More Sustainable Water Supply Networks. Water 2019, 11, 1297. [Google Scholar] [CrossRef] [Green Version]
- Fontana, N.; Giugni, M.; Portolano, D. Losses Reduction and Energy Production in Water-Distribution Networks. J. Water Resour. Plan. Manag. 2008, 14, 800–807. [Google Scholar] [CrossRef]
- Mitrovic, D.; García Morillo, J.; Rodríguez Díaz, J.A.; Mc Nabola, A. Optimization-Based Methodology for Selection of Pump-as-Turbine in Water Distribution Networks: Effects of Different Objectives and Machine Operation Limits on Best Efficiency Point. J. Water Resour. Plan. Manag. 2021, 147, 04021019. [Google Scholar] [CrossRef]
- Fernández Garcia, I.; Mc Nabola, A. Maximizing Hydropower Generation in Gravity Water Distribution Networks: Determining the Optimal Location and Number of Pumps as Turbines. J. Water Resour. Plan. Manag. 2020, 146. [Google Scholar] [CrossRef]
- Simão, M.; Ramos, H.M. Hybrid Pumped Hydro Storage Energy Solutions towards Wind and PV Integration: Improvement on Flexibility, Reliability and Energy Costs. Water 2020, 12, 2457. [Google Scholar] [CrossRef]
- Deloitte Consultores, S.A. Decisions That Matter: Impact of Electricity from Renewable Energy Sources. 2019. Available online: https://www2.deloitte.com/pt/pt/pages/energy-and-resources/articles/estudo-energias-renovaveis.html (accessed on 1 February 2021).
- Daccache, A.; Ciurana, J.S.; Rodriguez Diaz, J.A.; Knox, J.W. Water and energy footprint of irrigated agriculture in the Mediterranean region. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Crespo Chacón, M.; Rodríguez Díaz, J.A.; García Morillo, J.; McNabola, A. Hydropower energy recovery in irrigation networks: Validation of a methodology for flow prediction and pump as turbine selection. Renew. Energy 2020, 147. [Google Scholar] [CrossRef]
- Crespo Chacón, M.; Rodríguez Díaz, J.A.; García Morillo, J.; McNabola, A. Estimating regional potential for micro-hydropower energy recovery in irrigation networks on a large geographical scale. Renew. Energy 2020, 155, 396–406. [Google Scholar] [CrossRef]
- Mitrovic, D.; Crespo Chacón, M.; Mérida García, A.; García Morillo, J.; Rodríguez Diaz, J.A.; Ramos, H.M.; Adeyeye, K.; Carravetta, A.; McNabola, A. Multi-country scale assessment of available energy recovery potential using micro-hydropower in drinking, pressurised irrigation and wastewater networks, covering part of the eu. Water 2021, 13, 899. [Google Scholar] [CrossRef]
- Entidade Reguladora dos Serviços de Águas e Resíduos (ERSAR). Relatório Anual dos Serviços de Águas e Resíduos em Portugal-Volume 1: Caraterização Geral do Setor. 2017. Available online: http://www.ersar.pt/pt/publicacoes/relatorio-anual-do-setor (accessed on 2 February 2021).
- Energypedia Mozambique Energy Situation. Available online: https://energypedia.info/wiki/Mozambique_Energy_Situation (accessed on 14 January 2021).
- Rossman, L.A. EPANET 2 Users Manual EPA/600/R-00/57. 2000. Available online: https://read-download-books.com/v6/preview/?pid=6&offer_id=431&ref_id=3f22f9f6a064ed13119f80rAQgnVnbq8_964dcf68_ec371366&sub1=964dcf68&keyword=EPANET%20users%20manual%20project%20summary%20/%20Lewis%20A.%20Rossman (accessed on 18 December 2020).
- Novara, D.; Carravetta, A.; McNabola, A.; Ramos, H.M. Cost Model for Pumps as Turbines in Run-of-River and In-Pipe Microhydropower Applications. J. Water Resour. Plan. Manag. 2019, 145, 04019012. [Google Scholar] [CrossRef]
- Levinas, D.; Perelman, G.; Ostfeld, A. Water Leak Localization Using High-Resolution Pressure Sensors. Water 2021, 13, 591. [Google Scholar] [CrossRef]
- Araujo, L.S.; Ramos, H.; Coelho, S.T.; Araujo, L.S.; Ramos, H.M.; Coelho, S.T. Optimisation of the use of valves in a network water distribution system for leakage minimisation. In Advances in Water Supply Management; Maksimović, C., Butler, D., Memon, F.A., Eds.; Taylor & Francis: Abingdon, UK, 2003; pp. 97–107. [Google Scholar]
- Mazzolani, G.; Berardi, L.; Laucelli, D.; Martino, R.; Simone, A.; Giustolis, O. A methodology to estimate leakages in water distribution networks based on inlet flow data analysis. Procedia Eng. 2016, 162, 411–418. [Google Scholar] [CrossRef] [Green Version]
2020 | 2025 | NECP 2030 | “Off Track” 2030 | |
---|---|---|---|---|
Contribution to GDP | EUR 3860 M | EUR 8015 M | EUR 10,959 M | EUR 3396 M |
Job creation | 55,008 | 116,796 | 160,974 | 47,129 |
CO2 emissions avoided | 12.9 Mt | 19.5 Mt | 24.6 Mt | 11.6 Mt |
Imports avoided | EUR 1243 M | EUR 2389 M | EUR 3460 M | EUR 2087 M |
Energy dependence rate | 75.7% | 71.1% | 65.8% | 77.0% |
N (r.p.m.) | Q (L/s) | H (m) | η (-) | Pu (kW) | ∆t (h) | E (kWh) | E (MWh/year) |
---|---|---|---|---|---|---|---|
1520 | 23 | 22.30 | 0.53 | 2.66 | 20.00 | 53.28 | 19.45 |
1320 | 24 | 18.80 | 0.68 | 3.01 | 20.00 | 60.14 | 21.95 |
1120 | 25 | 16.40 | 0.78 | 3.13 | 20.00 | 62.68 | 22.88 |
Energy Selling Price (€/kWh) | 0.095 | 0.110 | ||||
Discount Rate | 6% | 8% | 10% | 6% | 8% | 10% |
NPV (EUR) | 25,185 | 18,932 | 14,632 | 30,349 | 23,024 | 17,988 |
B/C (-) | 5.262 | 4.315 | 3.624 | 6.136 | 5.031 | 4.225 |
Payback period (years) | 4 | 4 | 4 | 3 | 3 | 3 |
Quantity | Unitary Benefit | Total Benefit | |
---|---|---|---|
Energy Recovery | 22,878.49 kWh/year | EUR 0.11/kWh | EUR 2516.63/year |
Reduction in CO2 Emissions | 12.71 tCO2/year | 15.20 €/tCO2 | EUR 193.18/year |
Reduction in Real Losses | 10,022.86 m3/year | EUR 0.49/m3 | EUR 4894.77/year |
Total: | EUR 7604.59/year |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, H.M.; Morillo, J.G.; Diaz, J.A.R.; Carravetta, A.; McNabola, A. Sustainable Water-Energy Nexus towards Developing Countries’ Water Sector Efficiency. Energies 2021, 14, 3525. https://doi.org/10.3390/en14123525
Ramos HM, Morillo JG, Diaz JAR, Carravetta A, McNabola A. Sustainable Water-Energy Nexus towards Developing Countries’ Water Sector Efficiency. Energies. 2021; 14(12):3525. https://doi.org/10.3390/en14123525
Chicago/Turabian StyleRamos, Helena M., Jorge G. Morillo, Juan A. Rodríguez Diaz, Armando Carravetta, and Aonghus McNabola. 2021. "Sustainable Water-Energy Nexus towards Developing Countries’ Water Sector Efficiency" Energies 14, no. 12: 3525. https://doi.org/10.3390/en14123525