The Impact of the Coexistence of Methane Hazard and Rock-Bursts on the Safety of Works in Underground Hard Coal Mines
Abstract
:1. Introduction
- methane
- coal dust explosion
- rock-bursts, cave-ins
- fire
- water
- rock-and-gas outbursts
- climate
2. Sources of Methane Origin and Methods of Methane Hazard Prevention
- sorbed methane linked through its physical–chemical properties with coal substance;
- free methane found in the pores and fractures in the barren rock and coal seams.
- sufficient ventilation lets avoiding the emergence of methane ‘fuses’ or local accumulations of methane in excavations ventilated by airflows generated by the main fans and in workings ventilated using a separate ventilation system;
- methane drainage from coal seams through drainage boreholes, drilled from underground excavations or the surface;
- methanometric systems to control methane concentration in mine air, using sensors deployed in the different types of workings following the applicable regulations;
- supplementary ventilation devices installed in places with limited ventilation and local accumulations of methane.
3. Examples of Overlapping of Methane and Outburst Hazard
3.1. Research Objectives
3.2. The Methodology of the Research
- For the longwall H-4 in seam 409/4:
- ➢
- Sensor MM187-RW-placed in the Drift H-2 to seam 409/3 in the distance of 10–15 m before the crosscut with the Transport Glade H-2 in seam 409/1 and 409/2 (Figure 3);
- ➢
- Sensor MM 123-RW placed in the Drift H-2 to seam 409/3 in the distance of 10–15 m before the crosscut with the Transport Glade H-2 in seam 409/1 and 409/2 (Figure 3).
- For the longwall IV in seam 703/1:
4. Results and Discussion
4.1. The Area of Longwall H-4 in Seam 409/4 in Mine X
4.2. The Area of Longwall IV in Seam 703/1 in Coal Mine Y
- A bump of high energy in section H caused the rock mass’s disturbance and a sudden large emission of approximately 545,000 m3 of methane into the excavations.
- Such a large amount of methane was undoubtedly influenced by creating a safety pillar protecting the openings into a deposit section (Figure 5).
- In this part, rock mass was not disturbed and the coal mine did not implement any drainage methods.
- The average methane release into excavations after the rock-burst was tripled compared to the period before the burst.
- From 5 August 2018 to 15 August 2018, the sensors’ methane concentration changed from 60% to approximately 35% (Figure 8).
- The accident resulted in five casualties.
- A bump in the longwall IV area in seam 703/1 occurred on 22 January 2019 and resulted in a rock-burst in the area of crossing a longwall face with a ventilation heading.
- The amount of air flowing through the excavation decreased by 30% compared to the airflow before.
- The burst caused an additional outflow of 4500 m3 CH4 within 12 h, which means that methane release increased by 60% compared to the period before.
- The accident proved fatal to one employee, working in the crossing area of the longwall and the heading.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szlązak, N.; Zasadni, W. Wpływ Zagrożenia Tąpaniami Na Dobór Profilaktyki Pożarowej W Kopalniach Węgla; Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH: Kraków, Poland, 2004. (In Polish) [Google Scholar]
- Szlązak, N.; Borowski, M.; Obracaj, D.; Swolkień, J.; Korzec, M. Selected Issues Related to Methane Hazard. In Hard Coal Mines; Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH: Kraków, Poland, 2004. [Google Scholar]
- Szlązak, N.; Tręczek, S. Analysis of the Methane Hazard in the Context of a Rock Collapse with Effects in Workings Made in Seams 409/3 and 409/4, Which Occurred on 5 May 2018 at 1058 at JSW S.A. KWK “Borynia-Zofiówka-Jastrzębie” Front “Zofiówka,” Taking into Account the Methods Used and Preventive Activities; Higher Mining Institute: Niger, Niamey, Unpublished document; 2018. (In Polish) [Google Scholar]
- Kotarba, M. Geomechaniczne Kryteria Genezy Gazów Akumulowanych W Serii Węglonośnej Górnego Karbonu Niecki Wałbrzyskiej; Geologia No. 49; Zeszyty Naukowe AGH: Kraków, Poland, 1988. (In Polish) [Google Scholar]
- Czapliński, A. Węgiel Kamienny; Wydawnictwo AGH: Kraków, Poland, 1994. (In Polish) [Google Scholar]
- Kotarba, M. Geneza Metanu Występującego W Serii Węglonośnej GZW IDZW; Wydawnictwo AGH: Kraków, Poland, 1994. [Google Scholar]
- Zwietering, P.; Overeem, I.; Van Krevelen, W.D. Chemical structure and properties of coal 13. Activated diffusion of gases in coal. Fuel 1956, 35, 66–71. [Google Scholar]
- Tarnowski, J. Występowanie Metanu W Złożu Południowej Części Rybnickiego Okręgu Węglowego; Komunikat nr 541: Katowice, Poland, 1971. (In Polish) [Google Scholar]
- Geological Documentation of the “Dębieńsko 1” Hard Coal Deposit in Categories B, C1, C2. Geological and Ecological Company “Grafit”. 2007. Available online: https://docplayer.pl/56540786-Ii-interdyscyplinarna-sesja-wyjazdowa-doktorantow-politechniki-slaskiej.html (accessed on 15 September 2008). (In Polish).
- Krzystolik, P.; Kobiela, Z. Ocena efektywności metod podziemnego odmetanowania złóż węgla kamiennego w Polsce na przykładzie kilku kopalń. Wiadomości Górnicze 1999, 6, 265–270. (In Polish) [Google Scholar]
- Brunner, D.J.; Schwoebel, J.J.; Brinton, J.S. Modern CMM Drainage Strategies. First Western States CMM Recovery and Use Workshop, April 19–20, EPA Coalmine Methane Outreach Program. J.S. 2005. Available online: www.epa.gov/cmop (accessed on 15 September 2008).
- Coal Mine Staff (Ed.) C.R.—Collective Review: Brzeszcze Mine—Yesterday and today. In Brzeszcze; Review; Beskidzka Press Publisher: Brzeszcze, Poland, 2003. (In Polish) [Google Scholar]
- Creedy, D.P.; Kershaw, S. Firedamp prediction—A pocket calculator solution. Min. Eng. 1988, 2, 377–379. [Google Scholar]
- De Villiers, A.W. Methane drainage in longwall coal mining. J. South. Afr. Inst. Min. Metall. 1989, 89, 61–72. [Google Scholar]
- Diamond, W.P. Methane Control. for Underground Coal Mines; Information Circular 1994; U.S. Bureau of Mines, IC 9395, United States Department of the Interior: Washington, DC, USA, 1994.
- Fang, Z.; Li, X.; Wang, G.G.X. A gas mixture enhanced coalbed methane recovery technology applied to underground coal mines. J. Min. Sci. 2013, 49, 106–117. [Google Scholar] [CrossRef]
- Karacan, C.Ö.; Ruiz, A.F.; Cotè, M.; Phipps, S. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int. J. Coal Geol. 2011, 86, 121–156. [Google Scholar] [CrossRef]
- Kissel, F.N. Handbook for Methane Control in Mining; National Institute for Occupational Safety and Health: Pittsburgh, PA, USA, 2006.
- Krause, E.; Łukowicz, K. Methane drainage in Polish hard coal mines. Achievements and perspectives. In Proceedings of the 11th International Scientific and Technical Conference “Rockbursts 2004”, New Solutions in the Field of Preventing Rockbursts and Methane Hazards, Ustroń, Poland, 8–10 November 2004. (In Polish). [Google Scholar]
- Noack, K. Control of gas emissions in underground coal mines. Int. J. Coal Geol. 1998, 35, 57–82. [Google Scholar] [CrossRef]
- Szlązak, N.; Kubaczka, C. Impact of coal output concentration on methane emission to longwall faces. Arch. Min. Sci. 2012, 57, 3–21. [Google Scholar]
- Szlązak, N.; Borowski, M.; Obracaj, D.; Swolkień, J.; Korzec, M. Effectiveness of coal mine methane drainage in Polish mines. In Proceedings of the Twenty-ninth Annual International Pittsburgh Coal Conference: Coal—Energy, Environment and Sustainable Development, Pittsburgh, PA, USA, 15–18 October 2012. [Google Scholar]
- Whittles, D.N.; Lowndes, I.S.; Kingman, S.W.; Yates, C.; Jobling, S. The stability of methane capture boreholes around a log wall coal panel. Int. J. Coal Geol. 2007, 71, 313–328. [Google Scholar] [CrossRef]
- Roszkowski, J.; Szlązak, N. Selected Problems of Methane Drainage in a Coal Mine; Uczelniane Wydawnictwa Naukowo-Dydaktyczne: Kraków, Poland, 1999. (In Polish) [Google Scholar]
- Ajruni, A.T. Prognozirovanie I Predotvraŝenie Gazodinamičeskih Âvlenij v Ugol’nych Šahtah; Nauka: Moskva, Russia, 1987. [Google Scholar]
- Szlązak, N.; Borowski, M.; Obracaj, D.; Swolkień, J.; Korzec, M. Odmetanowanie Górotworu W Kopalniach Węgla Kamiennego; Wydawnictwa AGH: Kraków Poland, 2015. (In Polish) [Google Scholar]
- Regulation of the Minister of Energy on Detailed Requirements for Operating Underground Mining Plants. 23 November, 2016 Journal of Laws 2017, Item 1118, Warsaw. Available online: https://dziennikustaw.gov.pl/DU/rok/2017/pozycja/1118 (accessed on 15 September 2008). (In Polish)
Excavation | A Bump in the Area in Section H with an Energy Equal to or Higher 1 × 104 J | |||
---|---|---|---|---|
25.04.2018 | 30.04.2018 | 01.05.2018 | 04.05.2018 | |
Roadway H-10 seam 409/3-409/4 | none | none | none | increase by 0.1% |
Tailgate Road H-4 | none | increase by 0.1% | increase by 0.1% | |
Maingate Road H-4 | none | increase by 0.1–0.2% | increase by 0.1% increase by 1.0% (behind the dust collector) increase to 1.7% (the sensor in the face area) | none |
Ventilation drift F-H level 900 | increase by 0.1% | none | none | increase by 0.5% |
Drift H-2 to the seam 409/3 | none | none | none | none |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swolkień, J.; Szlązak, N. The Impact of the Coexistence of Methane Hazard and Rock-Bursts on the Safety of Works in Underground Hard Coal Mines. Energies 2021, 14, 128. https://doi.org/10.3390/en14010128
Swolkień J, Szlązak N. The Impact of the Coexistence of Methane Hazard and Rock-Bursts on the Safety of Works in Underground Hard Coal Mines. Energies. 2021; 14(1):128. https://doi.org/10.3390/en14010128
Chicago/Turabian StyleSwolkień, Justyna, and Nikodem Szlązak. 2021. "The Impact of the Coexistence of Methane Hazard and Rock-Bursts on the Safety of Works in Underground Hard Coal Mines" Energies 14, no. 1: 128. https://doi.org/10.3390/en14010128
APA StyleSwolkień, J., & Szlązak, N. (2021). The Impact of the Coexistence of Methane Hazard and Rock-Bursts on the Safety of Works in Underground Hard Coal Mines. Energies, 14(1), 128. https://doi.org/10.3390/en14010128