High Aperture Efficiency Array Antenna for Wireless Power Transfer Applications
Abstract
1. Introduction
2. Individual Antenna Geometry and Operating Principle
2.1. Proposed Antenna Structure and Fabrication
2.2. Simulation and Measurement
3. Array Extension and Performance Analysis
3.1. 2 × 2 Array Extension
3.2. 4 × 4 Array Extension
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, J.; Kim, D.; Hwang, K.; Park, H.H.; Kwak, S., II; Kwon, J.H.; Ahn, S. A Resonant Reactive Shielding for Planar Wireless Power Transfer System in Smartphone Application. IEEE Trans. Electromagn. Compat. 2017, 59, 695–703. [Google Scholar] [CrossRef]
- Li, S.; Mi, C.C. Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17. [Google Scholar]
- Liu, X.; Zhang, F.; Hackworth, S.A.; Sclabassi, R.J.; Sun, M. Wireless power transfer system design for implanted and worn devices. In Proceedings of the Bioengineering, Proceedings of the Northeast Conference, Boston, MA, USA, 3–5 April 2009; pp. 1–2. [Google Scholar]
- Ahn, C.-J.; Kamio, T.; Fujisaka, H.; Haeiwa, K. Prototype of 5.8 GHz Wireless Power Transmission System for Electric Vehicle System. In Proceedings of the 2nd International Conference on Environmental Science and Technology, Singapore, 26–28 Feburary 2011; pp. 1–5. [Google Scholar]
- Park, J.; Kim, J.; Shin, Y.; Park, B.; Kim, W.S.; Cheong, S.J.; Ahn, S. Toroidal-shaped coils for a wireless power transfer system for an unmanned aerial vehicle. J. Electromagn. Eng. Sci. 2019, 19, 48–55. [Google Scholar] [CrossRef]
- Kim, Y.; Boo, S.; Kim, G.; Kim, N.; Lee, B. Wireless power transfer efficiency formula applicable in near and far fields. J. Electromagn. Eng. Sci. 2019, 19, 239–244. [Google Scholar] [CrossRef]
- Campi, T.; Cruciani, S.; De Santis, V.; Maradei, F.; Feliziani, M. Near field wireless powering of deep medical implants. Energies 2019, 12, 2720. [Google Scholar] [CrossRef]
- Brown, W.C. The History of Power Transmission by Radio Waves. IEEE Trans. Microw. Theory Tech. 1984, 32, 1230–1242. [Google Scholar] [CrossRef]
- Hansen, R.C. Focal Region Characteristics of Focused Array Antennas. IEEE Trans. Antennas Propag. 1985, 33, 1328–1337. [Google Scholar] [CrossRef]
- Li, P.F.; Qu, S.W.; Yang, S.; Nie, Z.P. Microstrip array antenna with 2-D steerable focus in near-field region. IEEE Trans. Antennas Propag. 2017, 65, 4607–4617. [Google Scholar] [CrossRef]
- Lipworth, G.S.; Hagerty, J.A.; Arnitz, D.; Urzhumov, Y.A.; Nash, D.R.; Hannigan, R.J.; Tegreene, C.T.; Reynolds, M.S. A Large Planar Holographic Refiectarray for Fresnel-Zone Microwave Wireless Power Transfer at 5.8 GHz. In Proceedings of the IEEE MTT-S International Microwave Symposium, Philadelphia, PA, USA, 10–15 June 2018; pp. 1–4. [Google Scholar]
- Yu, S.; Liu, H.; Li, L. Design of near-field focused metasurface for high-efficient wireless power transfer with multifocus characteristics. IEEE Trans. Ind. Electron. 2019, 65, 3993–4002. [Google Scholar] [CrossRef]
- Yang, X.; Geyi, W.; Sun, H. Optimum Design of Wireless Power Transmission System Using Microstrip Patch Antenna Arrays. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1824–1827. [Google Scholar] [CrossRef]
- Carvalho, A.; Carvalho, N.; Pinho, P.; Georgiadis, A.; Constanzo, A. 5.8 GHz microstrip antennas and array for microwave power transfer. In Proceedings of the 2015 9th European Conference on Antennas and Propagation, Lisbon, Portugal, 13–17 April 2015; pp. 1–5. [Google Scholar]
- Shan, L.; Geyi, W. Optimal design of focused antenna arrays. IEEE Trans. Antennas Propag. 2014, 16, 5565–5571. [Google Scholar] [CrossRef]
- Shinohara, N. Experimental study of large rectenna array for microwave energy transmission. IEEE Trans. Microw. Theory Tech. 1998, 46, 261–268. [Google Scholar] [CrossRef]
- Ren, Y.J.; Chang, K. 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission. IEEE Trans. Microw. Theory Tech. 2006, 54, 1495–1502. [Google Scholar]
- Ren, Y.J.; Chang, K. New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission. IEEE Trans. Microw. Theory Tech. 2006, 54, 2970–2976. [Google Scholar]
- Nishida, K.; Taniguchi, Y.; Kawakami, K.; Homma, Y.; Mizutani, H.; Miyazaki, M.; Ikematsu, H.; Shinohara, N. 5.8 GHz high sensitivity rectenna array. In Proceedings of the 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Uji, Kyoto, Japan, 12–13 May 2011; pp. 19–22. [Google Scholar]
- Furukawa, M.; Takahashi, Y.; Fujiwara, T.; Mihara, S.; Saito, T.; Kobayashi, Y.; Kawasaki, S.; Shinohara, N.; Fujino, Y.; Tanaka, K.; et al. 5.8-GHz planar hybrid rectenna for wireless powered applications. In Proceedings of the Asia-Pacific Microwave Conference Proceedings, Yokohama, Japan, 12–15 December 2006; pp. 1–4. [Google Scholar]
- Navarro, E.A.; Craddock, I.J.; Paul, D.L. Synthetic dielectrics for planar antenna design. Electron. Lett. 2000, 36, 491–493. [Google Scholar] [CrossRef]
- Navarro, E.A.; Luximon, A.; Craddock, I.J.; Paul, D.L.; Dean, M. Multilayer and conformal antennas using synthetic dielectric substrates. IEEE Trans. Antennas Propag. 2003, 51, 905–908. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, L. Gain-Enhanced Patch Antennas with Loading of Shorting Pins. IEEE Trans. Antennas Propag. 2016, 64, 3310–3318. [Google Scholar] [CrossRef]
- Liu, N.W.; Zhu, L.; Choi, W.W. A Differential-Fed Microstrip Patch Antenna with Bandwidth Enhancement under Operation of TM10 and TM30 Modes. IEEE Trans. Antennas Propag. 2017, 65, 1607–1614. [Google Scholar] [CrossRef]
- Yang, Z.J.; Zhu, L.; Xiao, S. An implantable wideband circularly polarized microstrip patch antenna via two pairs of degenerate modes. IEEE Access 2019, 7, 4239–4247. [Google Scholar] [CrossRef]
- Anguera, J.; Andújar, A.; Jayasinghe, J.W. High-Directivity Microstrip Patch Antennas Based on TModd-0 Modes. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 39–43. [Google Scholar] [CrossRef]
- Anguera, J.; Montesinos, G.; Puente, C.; Borja, C.; Soler, J. An undersampled high-directivity microstrip patch array with a reduced number of radiating elements inspired on the sierpinski fractal. Microw. Opt. Technol. Lett. 2003, 2, 100–103. [Google Scholar] [CrossRef]
- FEKO EM Simulation Software, Altair Engineering Inc. 2018. Available online: http://www.altair.co.kr (accessed on 30 April 2020).
- Von Trentini, G. Partially Reflecting Sheet Arrays. IRE Trans. Antennas Propag. 1956, 4, 666–671. [Google Scholar] [CrossRef]
- Liu, H.; Lei, S.; Shi, X.; Li, L. Study of antenna superstrates using metamaterials for directivity enhancement based on fabry-perot resonant cavity. Int. J. Antennas Propag. 2013, 2013, 209741. [Google Scholar] [CrossRef]
Parameters | Optimized Values |
---|---|
w1 | 33 mm |
w2 | 82.5 mm |
h | 23 mm |
hs | 7 mm |
ht | 1.6 mm |
hc | 5 mm |
fx | 0 mm |
fy | 7 mm |
d | 4 mm |
px1 | −9.5 mm |
px2 | 9.5 mm |
px3 | 9.5 mm |
px4 | −9.5 mm |
py1 | 8.8 mm |
py2 | 8.8 mm |
py3 | −8.8 mm |
py4 | −8.8 mm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, E.; Hur, J.; Seo, C.; Lee, H.; Choo, H. High Aperture Efficiency Array Antenna for Wireless Power Transfer Applications. Energies 2020, 13, 2241. https://doi.org/10.3390/en13092241
Kang E, Hur J, Seo C, Lee H, Choo H. High Aperture Efficiency Array Antenna for Wireless Power Transfer Applications. Energies. 2020; 13(9):2241. https://doi.org/10.3390/en13092241
Chicago/Turabian StyleKang, Eunjung, Jun Hur, Chulhun Seo, Hojin Lee, and Hosung Choo. 2020. "High Aperture Efficiency Array Antenna for Wireless Power Transfer Applications" Energies 13, no. 9: 2241. https://doi.org/10.3390/en13092241
APA StyleKang, E., Hur, J., Seo, C., Lee, H., & Choo, H. (2020). High Aperture Efficiency Array Antenna for Wireless Power Transfer Applications. Energies, 13(9), 2241. https://doi.org/10.3390/en13092241