Photovoltaic Lithium-ion Battery with Layer-Structured Li2MnIII0.2MnIV0.8O2.9 Thin Film Chemically Fabricated for Cathodic Active Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of LMO Precursor Solution
2.3. Coating and Heat-treating Procedures
2.4. Crystal Structure of Thin Films
2.5. Surface Morphology and Thin Film Thickness
2.6. Chemical Characterization of Thin Films
2.7. Charge/discharge Cyclic Test on the Assembled Device
3. Results
3.1. XRD Patterns of FLMO, F’LMO, and FTitania
3.2. Surface Morphology and Film Thickness of FLMO, F’LMO, and FTitania
3.3. X-ray Photoelectron Spectra and Average Oxidation State of Mn
3.4. Charge/discharge Cyclic Test on the Assembled Device
4. Discussion
4.1. Preparation of LMO Precursor Solution
4.2. Layered Rock-Salt Phase LMO and Anatase-Type Titania by a Chemical Process
4.3. Formation of Mixed-Valent Mn Ions and O-Deficient in Thin Film
4.4. Delivered Voltages by the Assembled Device
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nagai, H.; Suzuki, T.; Takahashi, Y.; Sato, M. Photovoltaic lithium-ion battery fabricated by molecular precursor method. Funct. Mater. Lett. 2016, 9, 1650046. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Hara, H.; Kuritani, H.; Nishide, T. Novel route to Co3O4 thin films on glass substrates via N-alkyl substituted amine salt of Co(III)-EDTA complex. Sol. Energy Mater. Sol. Cells 1997, 45, 43–49. [Google Scholar] [CrossRef]
- Nagai, H.; Hasegawa, M.; Hara, H.; Mochizuki, C.; Takano, I.; Sato, M. An important factor for controlling the photoreactivity of titania: O-deficiency of anatase thin films. J. Mater. Sci. 2008, 43, 6902–6911. [Google Scholar] [CrossRef]
- Nagai, H.; Suzuki, T.; Hara, H.; Mochizuki, C.; Takano, I.; Honda, T.; Sato, M. Chemical fabrication of p-type Cu2O transparent thin film using molecular precursor method. Mater. Chem. Phys. 2012, 137, 252–257. [Google Scholar] [CrossRef]
- Mochizuki, C.; Hara, H.; Takano, I.; Hayakawa, T.; Sato, M. Application of carbonated apatite coating on a Ti substrate by aqueous spray method. Mater. Sci. Eng. C 2013, 33, 951–958. [Google Scholar] [CrossRef]
- Hishimone, P.N.; Nagai, H.; Morita, M.; Sakamoto, T.; Sato, M. Highly-Conductive and Well-Adhered Cu Thin Film Fabricated on Quartz Glass by Heat Treatment of a Precursor Film Obtained Via Spray-Coating of an Aqueous Solution Involving Cu(II) Complexes. Coatings 2018, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.J.; Tanabe, K.; Nagai, H.; Sato, M. Photo-Induced Super-hydrophilic Thin Films on Quartz Glass by UV Irradiation of Precursor Films Involving a Ti(IV) Complex at Room Temperature. Materials 2019, 12, 348. [Google Scholar] [CrossRef] [Green Version]
- Hishimone, P.N.; Watarai, K.; Nagai, H.; Sato, M. Thin Film Fabrication and Characterization of Layered Rock Salt LiCoO2 on Quartz Glass Spray-Coated with an Aqueous Ammonia Solution Involving Metal Acetates. Coatings 2019, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Nagai, H.; Mochizuki, C.; Hara, H.; Takano, I.; Sato, M. Enhanced UV-sensitivity of vis-responsive anatase thin films fabricated by using precursor solutions involving Ti complexes. Sol. Energy Mater. Sol. Cells 2008, 92, 1136–1144. [Google Scholar] [CrossRef]
- Nagai, H.; Sato, M. Heat Treatment in Molecular Precursor Method for Fabricating Metal Oxide Thin Films. In Heat Treatment—Conventional and Novel Applications; Czerwinski, F., Ed.; InTech: Rijeka, Croatia, 2012; pp. 297–322. [Google Scholar]
- Nagai, H.; Sato, M. Highly Functionalized Lithium-Ion Battery. In Alkali-ion Batteries; Yang, D., Ed.; InTech: Rijeka, Croatia, 2016; pp. 111–124. [Google Scholar]
- Nagai, H.; Hara, H.; Enomoto, M.; Mochizuki, C.; Honda, T.; Takano, I.; Sato, M. Synchronous electrochromism of lithium ion battery with chemically fabricated transparent thin films. Funct. Mater. Lett. 2013, 6, 1341001. [Google Scholar] [CrossRef]
- Nagai, H.; Mita, S.; Takano, I.; Honda, T.; Sato, M. Conductive and semi-transparent Cu thin film fabricated using molecular precursor solutions. Mater. Lett. 2015, 141, 235–237. [Google Scholar] [CrossRef]
- Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B. LixCoO2 (0 <x ≤ 1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789. [Google Scholar]
- Kalyani, P.; Chitra, S.; Mohan, T.; Gopukumar, S. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J. Power Sources 1999, 80, 103–106. [Google Scholar] [CrossRef]
- Ruther, R.E.; Dixit, H.; Pezeshki, A.M.; Sacci, R.L.; Cooper, V.R.; Nanda, J.; Veith, G.M. Correlating Local Structure with Electrochemical Activity in Li2MnO3. J. Phys. Chem. C 2015, 119, 18022–18029. [Google Scholar] [CrossRef]
- Jacob, C.; Jian, J.; Zhu, Y.; Su, Q.; Wang, H. A new approach to investigate Li2MnO3 and Li(Ni0.5Mn0.3Co0.2)O2 mixed phase cathode materials. J. Mater. Chem. A 2014, 2, 2283–2289. [Google Scholar] [CrossRef]
- Jacob, C.; Jian, J.; Su, Q.; Verkhoturov, S.; Guillemette, R.; Wang, H. Electrochemical and Structural Effects of In Situ Li2O Extraction from Li2MnO3 for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 2433–2438. [Google Scholar] [CrossRef]
- Taminato, S.; Hirayama, M.; Suzuki, K.; Yamada, N.L.; Yonemura, M.; Son, J.Y.; Kanno, R. Highly reversible capacity at the surface of a lithium-rich manganese oxide: A model study using an epitaxial film system. Chem. Commun. 2015, 51, 1673–1676. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, Y.; Taminato, S.; Hirayama, T.; Hirayama, M.; Kanno, R.; Ukyo, Y.; Ikuhara, Y. Interfacial Atomic Structures of Single-Phase Li2MnO3 Thin Film with Superior Initial Charge-Discharge Behavior. J. Electrochem. Soc. 2018, 165, A55–A60. [Google Scholar] [CrossRef]
- Kim, M.C.; Song, D.K.; Shin, H.S.; Baeg, S.H.; Kim, G.S.; Boo, J.H.; Han, J.G.; Yang, S.H. Surface modification for hydrophilic property of stainless steel treated by atmospheric-pressure plasma jet. Surf. Coat. Technol. 2003, 171, 312–316. [Google Scholar] [CrossRef]
- Santos, V.P.; Pereira, M.F.R.; Órfão, J.J.M.; Figueiredo, J.L. Catalytic oxidation of ethyl acetate over a cesium modified cryptomelane catalyst. Appl. Catal. B Environ. 2009, 88, 550–556. [Google Scholar] [CrossRef]
- Yang, G.; Wang, L.; Wang, J.; Yan, W. Fabrication and formation mechanism of Li2MnO3 ultrathin porous nanobelts by electrospinning. Ceram. Int. 2017, 43, 71–76. [Google Scholar] [CrossRef]
- Polat, O.; Coskun, F.M.; Coskun, M.; Durmus, Z.; Caglar, Y.; Caglar, M.; Turut, A. Tailoring the band gap of ferroelectric YMnO3 through tuning the Os doping level. J. Mater. Sci. Mater. Electron. 2019, 30, 3443–3451. [Google Scholar] [CrossRef]
- Tan, X.; Liu, R.; Xie, C.; Shen, Q. Modified structural characteristics and enhanced electrochemical properties of oxygen-deficient Li2MnO3-δ obtained from pristine Li2MnO3. J. Power Sources 2018, 374, 134–141. [Google Scholar] [CrossRef]
- Galakhov, V.R.; Demeter, M.; Bartkowski, S.; Neumann, M.; Ovechkina, N.A.; Kurmaev, E.Z.; Lobachevskaya, N.I.; Mukovskii, Y.M.; Mitchell, J.; Ederer, D.L. Mn 3s exchange splitting in mixed-valence manganites. Phys. Rev. B 2002, 65, 113102. [Google Scholar] [CrossRef]
- Anandan, S.; Chen, C.Y.; Wu, J.J. Sonochemical synthesis and characterization of turbostratic MnNi(OH)2 layered double hydroxide nanoparticles for supercapacitor applications. RSC Adv. 2014, 4, 55519–55523. [Google Scholar] [CrossRef]
- Saitoh, T.; Bocquet, A.E.; Mizokawa, T.; Namatame, H.; Fujimori, A.; Abbate, M.; Takeda, Y.; Takano, M. Electronic structure of La1–xSrxMnO3 studied by photoemission and X-ray absorption spectroscopy. Phys. Rev. B 1995, 51, 13942–13951. [Google Scholar] [CrossRef]
- Kubota, K.; Kaneko, T.; Hirayama, M.; Yonemura, M.; Imanari, Y.; Nakane, K.; Kanno, R. Direct synthesis of oxygen-deficient Li2MnO3−x for high capacity lithium battery electrodes. J. Power Sources 2012, 216, 249–255. [Google Scholar] [CrossRef]
- Ding, M.; Liu, H.; Zhao, X.; Pang, L.; Deng, L.; Li, M. Composite with TiO2 and extension of discharge voltage range for capacity enhancement of a Li4Ti5O12 battery. RSC Adv. 2017, 7, 43894–43904. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.; Shim, H.; Fleischmann, S.; Presser, V. Fast and stable lithium-ion storage kinetics of anatase titanium dioxide/carbon onion hybrid electrodes. J. Mater. Chem. A 2018, 6, 9480–9488. [Google Scholar] [CrossRef]
- Rana, J.; Stan, M.; Kloepsch, R.; Li, J.; Schumacher, G.; Welter, E.; Zizak, I.; Banhart, J.; Winter, M. Structural Changes in Li2MnO3 Cathode Material for Li-ion Batteries. Adv. Energy Mater. 2014, 4, 1300998. [Google Scholar] [CrossRef]
Cathodic Active Material | 0.2 mA Current-Insertion Mode | Light-Irradiation Mode | ||
---|---|---|---|---|
Charge (V) | Discharge (V) | Charge (V) | Discharge (V) | |
LMO | 2.67 | 2.21 | 1.45 | 1.44 |
LCO [1] | 2.04 | 1.82 | 1.32 | 1.29 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwazono, Y.; Nagai, H.; Sato, M. Photovoltaic Lithium-ion Battery with Layer-Structured Li2MnIII0.2MnIV0.8O2.9 Thin Film Chemically Fabricated for Cathodic Active Material. Energies 2020, 13, 1486. https://doi.org/10.3390/en13061486
Suwazono Y, Nagai H, Sato M. Photovoltaic Lithium-ion Battery with Layer-Structured Li2MnIII0.2MnIV0.8O2.9 Thin Film Chemically Fabricated for Cathodic Active Material. Energies. 2020; 13(6):1486. https://doi.org/10.3390/en13061486
Chicago/Turabian StyleSuwazono, Yutaka, Hiroki Nagai, and Mitsunobu Sato. 2020. "Photovoltaic Lithium-ion Battery with Layer-Structured Li2MnIII0.2MnIV0.8O2.9 Thin Film Chemically Fabricated for Cathodic Active Material" Energies 13, no. 6: 1486. https://doi.org/10.3390/en13061486
APA StyleSuwazono, Y., Nagai, H., & Sato, M. (2020). Photovoltaic Lithium-ion Battery with Layer-Structured Li2MnIII0.2MnIV0.8O2.9 Thin Film Chemically Fabricated for Cathodic Active Material. Energies, 13(6), 1486. https://doi.org/10.3390/en13061486