Energy Saving Potential of Industrial Solar Collectors in Southern Regions of Russia: The Case of Krasnodar Region
Abstract
1. Introduction
2. Methods
3. General Trends in Development Industrial Solar Collectors in the World and Russia (Research Background)
3.1. Industrial Solar Heat Worldwide
3.2. Status-Quo of Solar Heat in Russia
4. Results
4.1. Assessment of the Economic Efficiency of Industrial Solar Collectors in Russia
4.2. Assessment of Energy-Saving Potential in the Industry of Southern Russia (for Example, the Krasnodar Region)
5. Discussion and Policy Applications
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RES | renewable energy sources |
LCOE | levelized cost of energy |
FPC water | flat plate solar water collectors |
ETC water | evacuated tube collector |
SHIP | solar heat for industrial processes |
MWth | megawatts thermal |
References
- Olabi, A. Circular economy and renewable energy. Energy 2019, 181, 450–454. [Google Scholar] [CrossRef]
- Donia, E.; Mineo, A.; Sgroi, F. A methodological approach for assessing business investments in renewable resources from a circular economy perspective. Land Use Policy 2018, 76, 823–827. [Google Scholar] [CrossRef]
- Renewable Energy Statistics 2019. Available online: https://www.irena.org/publications/2019/Jul/Renewable-energy-statistics-2019 (accessed on 13 December 2019).
- REN21. Renewables 2019 Global Status Report. Paris: REN21 Secretariat. Available online: https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf (accessed on 13 December 2019).
- Renewable Energy Policies in a Time of Transition. IRENA, OCED/IEA and REN21. 2018. 112 P. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_IEA_REN21_Policies_2018.pdf (accessed on 13 December 2019).
- Nicolli, F.; Vona, F. Energy market liberalization and renewable energy policies in OECD countries. Energy Policy 2019, 128, 853–867. [Google Scholar] [CrossRef]
- Erdiwansyah Mamat, R.; Sani, M.; Sudhakar, K. Renewable energy in Southeast Asia: Policies and recommendations. Sci. Total Env. 2019, 670, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Ratner, S.; Nizhegorodtsev, R. Analysis of renewable energy projects’ implementation in Russia. Therm. Eng. 2017, 64, 429–436. [Google Scholar] [CrossRef]
- Energy Efficiency Market Report 2017. OECD/IEA, Paris. 2017. 142 P. Available online: https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/energy/energy-resources/Energy_Efficiency_Marketing_Report_2017.pdf (accessed on 13 December 2019).
- Schmitt, B. Classification of Industrial Heat Consumers for Integration of Solar Heat. Energy Procedia 2016, 91, 650–660. [Google Scholar] [CrossRef]
- Butuzov, V. Solar Heat Supply: World Statistics and Peculiarities of the Russian Experience. Therm. Eng. 2018, 65, 741–750. [Google Scholar] [CrossRef]
- Kumar, L.; Hasanuzzaman, M.; Rahim, N. Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Convers. Manag. 2019, 195, 885–908. [Google Scholar] [CrossRef]
- Schramm, S.; Adam, M. Storage in Solar Process Heat Applications. Energy Procedia 2014, 48, 1202–1209. [Google Scholar] [CrossRef][Green Version]
- Farjana, S.; Huda, N.; Mahmud, M.; Saidur, R. Solar process heat in industrial systems – A global review. Renew. Sustain. Energy Rev. 2018, 82, 2270–2286. [Google Scholar] [CrossRef]
- Weiss, W.; Spörk-Dür, M. Solar Heat Worldwide. Global Market Development and Trends in 2017. Available online: https://www.iea-shc.org/Data/Sites/1/publications/Solar-Heat-Worldwide-2018.pdf (accessed on 13 December 2019).
- Chang, K.; Lin, W.; Leu, T.; Chung, K. Perspectives for solar thermal applications in Taiwan. Energy Policy 2016, 94, 25–28. [Google Scholar] [CrossRef]
- Suresh, N.; Rao, B. Solar energy for process heating: A case study of select Indian industries. J. Clean. Prod. 2017, 151, 439–451. [Google Scholar] [CrossRef]
- Statistical Digest Industrial “Production in Russia – 2016”, Part 5.4 “Consumption of certain types of fuel and energy resources by type of economic activity. Available online: https://gks.ru/bgd/regl/b16_48/Main.htm (accessed on 14 December 2019).
- Frid, S.; Kolomiets, Y.; Sushnikova, E.; Yamuder, V. Effectiveness and prospects of using different solar water heating systems under the climatic conditions of the Russian Federation. Therm. Eng. 2011, 58, 910–916. [Google Scholar] [CrossRef]
- Gridasov, M.; Kiseleva, S.; Nefedova, L.; Popel’, O.; Frid, S. Development of the geoinformation system Renewable sources of Russia: Statement of the problem and choice of solution methods. Therm. Eng. 2011, 58, 924–931. [Google Scholar] [CrossRef]
- Ueckerdt, F.; Hirth, L.; Luderer, G.; Edenhofer, O. System LCOE: What are the costs of variable renewables? Energy 2013, 63, 61–75. [Google Scholar] [CrossRef]
- Reichenberg, L.; Hedenus, F.; Odenberger, M.; Johnsson, F. The marginal system LCOE of variable renewables–Evaluating high penetration levels of wind and solar in Europe. Energy 2018, 152, 914–924. [Google Scholar] [CrossRef]
- Weiss, W.; Spörk-Dür, M. Solar Heat Worldwide. Global Market Development and Trends in 2018; AEE-Institute for Sustainable Technologies: Gleisdorf, Austria, 2019. [Google Scholar]
- Wang, H.; Chen, W. Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe. Appl. Energy 2019, 238, 1563–1572. [Google Scholar] [CrossRef]
- Sahoo, N.; Mohapatra, P.; Sahoo, B.; Mahanty, B. Rationality of energy efficiency improvement targets under the PAT scheme in India–A case of thermal power plants. Energy Econ. 2017, 66, 279–289. [Google Scholar] [CrossRef]
- Huang, J.; Tian, Z.; Fan, J. A comprehensive analysis on development and transition of the solar thermal market in China with more than 70% market share worldwide. Energy 2019, 174, 611–624. [Google Scholar] [CrossRef]
- Imtiaz Hussain, M.; Ménézo, C.; Kim, J. Advances in solar thermal harvesting technology based on surface solar absorption collectors: A review. Sol. Energy Mater. Sol. Cells 2018, 187, 123–139. [Google Scholar] [CrossRef]
- Shafieian, A.; Khiadani, M.; Nosrati, A. A review of latest developments, progress, and applications of heat pipe solar collectors. Renew. Sustain. Energy Rev. 2018, 95, 273–304. [Google Scholar] [CrossRef]
- Oosthuizen, D.; Goosen, N.; Hess, S. Solar thermal process heat in fishmeal production: Prospects for two South African fishmeal factories. J. Clean. Prod. 2020, 253, 119818. [Google Scholar] [CrossRef]
- Svetlana, R.; Yuri, C.; Larisa, D.; Anna, P. Management of Energy Enterprises: Energy-efficiency Approach in Solar Collectors Industry: The Case of Russia. Int. J. Energy Econ. Policy 2018, 8, 237–243. [Google Scholar]
- Loewen, J. LCOE is an undiscounted metric that distorts comparative analyses of energy costs. Electr. J. 2019, 32, 40–42. [Google Scholar] [CrossRef]
- Fan, J.; Wei, S.; Yang, L.; Wang, H.; Zhong, P.; Zhang, X. Comparison of the LCOE between coal-fired power plants with CCS and main low-carbon generation technologies: Evidence from China. Energy 2019, 176, 143–155. [Google Scholar] [CrossRef]
- Bruck, M.; Sandborn, P.; Goudarzi, N. A Levelized Cost of Energy (LCOE) model for wind farms that include Power Purchase Agreements (PPAs). Renew. Energy 2018, 122, 131–139. [Google Scholar] [CrossRef]
- Administration and City Council of Krasnodar. Tariffs for Housing and Communal Services. Available online: https://krd.ru/upravlenie-tsen-i-tarifov/elektronnyy-sbornik-1-07-2013/analytic_info/informatsiya-ob-urovne-tsen-i-tarifov-na-tovary-i-uslugi-v-gorode-krasnodare-za-2019-god/informatsiya-ob-urovnyakh-tsen-i-tarifov-na-tovary-i-uslugi-po-munitsipalnomu-obrazovaniyu-gorod-krasnodar-za-1-kvartal-2019-goda/tarify-na-uslugi-zhilischno-kommunalnogo-khozyaystva/ (accessed on 14 December 2019).
- Klimenko, V.; Klimenko, A.; Mikushina, O.; Tereshin, A. To avoid global warming by 2 °C—mission impossible. Therm. Eng. 2016, 63, 605–610. [Google Scholar] [CrossRef]
- Orlov, A.; Grethe, H.; McDonald, S. Carbon taxation in Russia: Prospects for a double dividend and improved energy efficiency. Energy Econ. 2013, 37, 128–140. [Google Scholar] [CrossRef]
- Liobikienė, G.; Butkus, M. The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy. Renew. Energy 2017, 106, 298–309. [Google Scholar] [CrossRef]
- Saheb, Y.; Shnapp, S.; Johnson, C. The Zero Energy concept: Making the whole greater than the sum of the parts to meet the Paris Climate Agreement’s objectives. Curr. Opin. Environ. Sustain. 2018, 30, 138–150. [Google Scholar] [CrossRef]
- Ratner, S.; Iosifov, V.; Ratner, M. Optimization of the regional energy system with high potential of use of bio-waste and bioresources as energy sources with respect to ecological and economic parameters: The Krasnodar Krai case. Reg. Econ. Theory Pract. 2018, 16, 2383–2398. [Google Scholar] [CrossRef]
- Ratner, S.V.; Ratner, P.D. Regional Energy Efficiency Programs in Russia: The Factors of Success. Region 2016, 3, 68–85. [Google Scholar] [CrossRef]
- Ministry of Fuel and Energy Complex and Housing and Communal Services of the Krasnodar Territory. State Program of the Krasnodar Territory Development of the Fuel and Energy Complex. Available online: http://www.gkh-kuban.ru/kcpvcp19.html (accessed on 14 December 2019).
- Matraeva, L.; Solodukha, P.; Erokhin, S.; Babenko, M. Improvement of Russian energy efficiency strategy within the framework of green economy concept (based on the analysis of experience of foreign countries). Energy Policy 2019, 125, 478–486. [Google Scholar] [CrossRef]
- Matraeva, L.V.; Goryunova, N.A.; Smirnova, S.N.; Babenko, M.I.; Erokhin, S.G.; Solodukha, P.V. Methodological approaches to the assessment of energy efficiency within the framework of the concept of green economy and sustainable development. Int. J. Energy Econ. Policy 2017, 7, 231–239. [Google Scholar]
- Berezin, A.; Ratner, S. Policy transition to low-carbon economy in Russia: State support measures. In Proceedings of the 13th International Days Of Statistics And Economics Conference Proceedings, Prague, Czech Republic, 5–7 September 2019; Libuše Macáková, MELANDRIUM, 2019 Fügnerova 691 274 01 Slaný IČO: 48709395. ISBN 978-80-87990-18-6. [Google Scholar]
- Kylili, A.; Fokaides, P.; Ioannides, A.; Kalogirou, S. Environmental assessment of solar thermal systems for the industrial sector. J. Clean. Prod. 2018, 176, 99–109. [Google Scholar] [CrossRef]
- Boute, A.; Zhikharev, A. Vested interests as driver of the clean energy transition: Evidence from Russia’s solar energy policy. Energy Policy 2019, 133, 110910. [Google Scholar] [CrossRef]
- Ratner, S.V.; Klochkov, V.V. Scenario Forecast for Wind Turbine Manufacturing in Russia. Int. J. Energy Econ. Policy 2017, 7, 144–151. [Google Scholar]
- Gawel, E.; Lehmann, P.; Purkus, A.; Söderholm, P.; Witte, K. Rationales for technology-specific RES support and their relevance for German policy. Energy Policy 2017, 102, 16–26. [Google Scholar] [CrossRef]
- Huntington, S.; Rodilla, P.; Herrero, I.; Batlle, C. Revisiting support policies for RES-E adulthood: Towards market compatible schemes. Energy Policy 2017, 104, 474–483. [Google Scholar] [CrossRef]
Sector | Industrial Process | Temperature Range, °С |
---|---|---|
Chemicals | Biochemical reaction | 20–60 |
Distillation | 100–200 | |
Compression | 105–165 | |
Compression | 110–130 | |
Foods and beverages | Blanching | 60–100 |
Scalding | 45–90 | |
Evaporating | 40–130 | |
Cooking | 70–120 | |
Pasteurization | 60–145 | |
Smoking | 20–85 | |
Cleaning | 60–90 | |
Sterilization | 100–140 | |
Tempering | 40–80 | |
Drying | 40–200 | |
Washing | 30–80 | |
Paper and paperboard manufacturing | Bleaching | 40–150 |
De-inking | 50–70 | |
Cooking wood in a chemical solution | 110–180 | |
Drying | 95–200 | |
Fabricated Metal | Chromating | 20–75 |
Degreasing | 20–100 | |
Electroplating | 30–95 | |
Phosphating | 35–95 | |
Purging | 40–70 | |
Drying | 60–200 | |
Rubber and Plastics | Drying | 50–150 |
Preheating | 40–70 | |
Textile industry | Bleaching | 40–100 |
Coloring | 40–130 | |
Drying | 60–90 | |
Washing | 50–100 | |
Fixing | 160–180 | |
Pressing | 80–100 | |
Wood industry | Steaming | 70–90 |
Pickling | 40–70 | |
Compression | 120–170 | |
Cooking | 80–90 | |
Drying | 40–150 | |
Mining | Cleaning | ~60 |
Electro-winning | ~50 | |
Other processes | ~80 | |
Agriculture | Drying | 80 |
Water heating | 90 | |
Automobile industry | Water heating | 90 |
Cleaning | 120 | |
Other processes | ~50 |
Country | 2017 | 2018 | ||||
---|---|---|---|---|---|---|
Number of New Collectors | Gross Area, m2 | The Average Area of Collector, m2 | Number of New Collectors | Gross Area, m2 | The Average Area of Collector, m2 | |
Oman | 1 | 148,000 | 148,000 | - | - | - |
Mexico | 36 | 6411 | 178 | 51 | 6,898 | 135 |
India | 36 | 15,313 | 425 | 10 | 3964 | 396 |
China | 19 | 11,534 | 607 | 15 | 28,813 | 1921 |
Austria | 2 | 1758 | 893 | 3 | 435 | 145 |
France | 2 | 2052 | 1026 | 2 | 5,543 | 2772 |
Afghanistan | 1 | 3260 | 3260 | - | - | - |
Jordan | 1 | 1254 | 1254 | - | - | - |
Germany | - | - | - | 9 | 1589 | 177 |
Spain | - | - | - | 3 | 1218 | 406 |
Others | 12 | 2971 | 114 | 15 | 5193 | 346 |
Total | 124 | 192,580 | 108 | 53,654 |
Name of the System (Country) | Gross Area, 1000 m2 | Capacity, MWth | Type of Industrial Processes | Type of Collector |
---|---|---|---|---|
Miraah (Oman) | 148 | 100 | Heavy oil production | Parabolic through |
Gaby Copper mine (Chile) | 39.3 | 28 | Copper mining | Flat plate |
Qier Solar (China) | 13 | 9 | Dyeing fabrics | Flat plate |
Prestage Foods Factory (USA) | 7.8 | 5 | Sanitation | Flat plate |
Heli Lithium (China) | 3.3 | 2.3 | Lithium-ion Battery Manufacturing | Evacuated tube |
Kabul Meat Factory (Afghanistan) | 3.26 | 2.2 | Meat processing | Parabolic through |
Polyocean Algal Industry Group (China) | 2.2 | 1.5 | Seafood processing | Evacuated tube |
Japan Tobacco International (Jourdan) | 1.25 | 0.7 | Cigarette production | Frenel |
Parameters of Linear Regression Model | Value |
---|---|
Solar insolation, kWh/m2-a | 0.389 *** |
const | 41.719 ** |
R2 | 0.97 |
P(F-stat) | 0.0001 |
Goods | Specific Consumption of Thermal Energy, Thousand kcal per ton/Thousand per Deciliter) 1 | Production Volume, Thousand Tones/Thousand Deciliter [13] | Total Thermal Energy Consumption, Thousands kcal |
---|---|---|---|
Sugar form sugar beet | 1376.3 | 1505.2 | 2,071,606,760 |
Bread and Bakery | 285.7 | 303.4 | 86,681,380 |
Milk | 250 | 309.5 | 77,375,000 |
Cheese and cheese Products | 752 | 65 | 48,880,000 |
Vegetable oil | 348 | 512 | 178,176,000 |
Butter | 1365.6 | 10.1 | 13,792,560 |
Alcohol | 1539.4 | 17,870.5 | 27,509,847.7 |
Beer | 2156.9 | 20,200 | 43,569,380 |
Meat | 155.7 | 76.6 | 11,926,620 |
Meat products | 351.9 | 65.2 | 22,943,880 |
Compound feed | 30.3 | 975.7 | 29,563,710 |
Total | 2,612,025,138 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratner, S.; Gomonov, K.; Revinova, S.; Lazanyuk, I. Energy Saving Potential of Industrial Solar Collectors in Southern Regions of Russia: The Case of Krasnodar Region. Energies 2020, 13, 885. https://doi.org/10.3390/en13040885
Ratner S, Gomonov K, Revinova S, Lazanyuk I. Energy Saving Potential of Industrial Solar Collectors in Southern Regions of Russia: The Case of Krasnodar Region. Energies. 2020; 13(4):885. https://doi.org/10.3390/en13040885
Chicago/Turabian StyleRatner, Svetlana, Konstantin Gomonov, Svetlana Revinova, and Inna Lazanyuk. 2020. "Energy Saving Potential of Industrial Solar Collectors in Southern Regions of Russia: The Case of Krasnodar Region" Energies 13, no. 4: 885. https://doi.org/10.3390/en13040885
APA StyleRatner, S., Gomonov, K., Revinova, S., & Lazanyuk, I. (2020). Energy Saving Potential of Industrial Solar Collectors in Southern Regions of Russia: The Case of Krasnodar Region. Energies, 13(4), 885. https://doi.org/10.3390/en13040885