B | ${\stackrel{\xb7}{Ex}}_{1}+{\stackrel{\xb7}{Ex}}_{2}={\stackrel{\xb7}{Ex}}_{3}+{\stackrel{\xb7}{Ex}}_{4}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{B}}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{B}}$ | ${\eta}_{\mathrm{ex},\mathrm{B}}=\frac{{\stackrel{\xb7}{Ex}}_{3}-{\stackrel{\xb7}{Ex}}_{1}}{{\stackrel{\xb7}{Ex}}_{2}}$ |

T1 | ${\stackrel{\xb7}{Ex}}_{5}={\stackrel{\xb7}{Ex}}_{6}+{\stackrel{\xb7}{W}}_{7}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{T}1}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{T}1}$ | ${\eta}_{\mathrm{ex},\mathrm{T}1}=\frac{{\stackrel{\xb7}{W}}_{7}}{{\stackrel{\xb7}{Ex}}_{5}-{\stackrel{\xb7}{Ex}}_{6}}$ |

DF1 | ${\stackrel{\xb7}{W}}_{7}+{\stackrel{\xb7}{Ex}}_{8}={\stackrel{\xb7}{Ex}}_{9}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{DF}1}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{DF}1}$ | ${\eta}_{\mathrm{ex},\mathrm{DF}1}=\frac{{\stackrel{\xb7}{Ex}}_{9}-{\stackrel{\xb7}{Ex}}_{8}}{{\stackrel{\xb7}{W}}_{7}}$ |

T2 | ${\stackrel{\xb7}{Ex}}_{10}={\stackrel{\xb7}{W}}_{11}+{\stackrel{\xb7}{Ex}}_{12}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{T}2}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{T}2}$ | ${\eta}_{\mathrm{ex},\mathrm{T}2}=\frac{{\stackrel{\xb7}{W}}_{11}}{{\stackrel{\xb7}{Ex}}_{10}-{\stackrel{\xb7}{Ex}}_{12}}$ |

FWP | ${\stackrel{\xb7}{W}}_{11}+{\stackrel{\xb7}{Ex}}_{13}={\stackrel{\xb7}{Ex}}_{14}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{FWP}}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{FWP}}$ | ${\eta}_{\mathrm{ex},\mathrm{FWP}}=\frac{{\stackrel{\xb7}{Ex}}_{14}-{\stackrel{\xb7}{Ex}}_{13}}{{\stackrel{\xb7}{W}}_{11}}$ |

TRP | ${\stackrel{\xb7}{W}}_{15}+{\stackrel{\xb7}{Ex}}_{16}={\stackrel{\xb7}{Ex}}_{17}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{TRP}}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{TRP}}$ | ${\eta}_{\mathrm{ex},\mathrm{TRP}}=\frac{{\stackrel{\xb7}{Ex}}_{17}-{\stackrel{\xb7}{Ex}}_{16}}{{\stackrel{\xb7}{W}}_{15}}$ |

TPR | ${\stackrel{\xb7}{Ex}}_{17}+{\stackrel{\xb7}{Ex}}_{18}={\stackrel{\xb7}{Ex}}_{19}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{TPR}}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{TPR}}$ | ${\eta}_{\mathrm{ex},\mathrm{TPR}}=\frac{{\stackrel{\xb7}{Ex}}_{19}}{{\stackrel{\xb7}{Ex}}_{17}+{\stackrel{\xb7}{Ex}}_{18}}$ |

T3 | ${\stackrel{\xb7}{Ex}}_{20}={\stackrel{\xb7}{Ex}}_{21}+{\stackrel{\xb7}{W}}_{22}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{T}3}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{T}3}$ | ${\eta}_{\mathrm{ex},\mathrm{T}3}=\frac{{\stackrel{\xb7}{W}}_{22}}{{\stackrel{\xb7}{Ex}}_{20}-{\stackrel{\xb7}{Ex}}_{21}}$ |

DCP | ${\stackrel{\xb7}{W}}_{22}+{\stackrel{\xb7}{Ex}}_{23}={\stackrel{\xb7}{Ex}}_{24}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{DCP}}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{DCP}}$ | ${\eta}_{\mathrm{ex},\mathrm{DCP}}=\frac{{\stackrel{\xb7}{Ex}}_{24}-{\stackrel{\xb7}{Ex}}_{23}}{{\stackrel{\xb7}{W}}_{22}}$ |

T4 | ${\stackrel{\xb7}{Ex}}_{25}={\stackrel{\xb7}{Ex}}_{26}+{\stackrel{\xb7}{W}}_{27}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{T}4}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{T}4}$ | ${\eta}_{\mathrm{ex},\mathrm{T}4}=\frac{{\stackrel{\xb7}{W}}_{27}}{{\stackrel{\xb7}{Ex}}_{25}-{\stackrel{\xb7}{Ex}}_{26}}$ |

DF2 | ${\stackrel{\xb7}{W}}_{27}+{\stackrel{\xb7}{Ex}}_{28}={\stackrel{\xb7}{Ex}}_{29}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{DF}2}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{DF}2}$ | ${\eta}_{\mathrm{ex},\mathrm{DF}2}=\frac{{\stackrel{\xb7}{Ex}}_{29}-{\stackrel{\xb7}{Ex}}_{28}}{{\stackrel{\xb7}{W}}_{27}}$ |

T5 | ${\stackrel{\xb7}{Ex}}_{30}={\stackrel{\xb7}{Ex}}_{31}+{\stackrel{\xb7}{W}}_{32}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{T}5}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{T}5}$ | ${\eta}_{\mathrm{ex},\mathrm{T}5}=\frac{{\stackrel{\xb7}{W}}_{32}}{{\stackrel{\xb7}{Ex}}_{30}-{\stackrel{\xb7}{Ex}}_{31}}$ |

DF3 | ${\stackrel{\xb7}{W}}_{32}+{\stackrel{\xb7}{Ex}}_{33}={\stackrel{\xb7}{Ex}}_{34}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{DF}3}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{DF}3}$ | ${\eta}_{\mathrm{ex},\mathrm{DF}3}=\frac{{\stackrel{\xb7}{Ex}}_{34}-{\stackrel{\xb7}{Ex}}_{33}}{{\stackrel{\xb7}{W}}_{32}}$ |

HE1 | ${\stackrel{\xb7}{Ex}}_{35}+{\stackrel{\xb7}{Ex}}_{36}={\stackrel{\xb7}{Ex}}_{37}+{\stackrel{\xb7}{Ex}}_{38}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{HE}1}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{HE}1}$ | ${\eta}_{\mathrm{ex},\mathrm{HE}1}=\frac{{\stackrel{\xb7}{Ex}}_{38}-{\stackrel{\xb7}{Ex}}_{36}}{{\stackrel{\xb7}{Ex}}_{35}-{\stackrel{\xb7}{Ex}}_{37}}$ |

HE2 | ${\stackrel{\xb7}{Ex}}_{39}+{\stackrel{\xb7}{Ex}}_{40}={\stackrel{\xb7}{Ex}}_{41}+{\stackrel{\xb7}{Ex}}_{42}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{HE}2}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{HE}2}$ | ${\eta}_{\mathrm{ex},\mathrm{HE}2}=\frac{{\stackrel{\xb7}{Ex}}_{42}-{\stackrel{\xb7}{Ex}}_{40}}{{\stackrel{\xb7}{Ex}}_{39}-{\stackrel{\xb7}{Ex}}_{41}}$ |

HE3 | ${\stackrel{\xb7}{Ex}}_{43}+{\stackrel{\xb7}{Ex}}_{44}={\stackrel{\xb7}{Ex}}_{45}+{\stackrel{\xb7}{Ex}}_{46}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{HE}3}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{HE}3}$ | ${\eta}_{\mathrm{ex},\mathrm{HE}3}=\frac{{\stackrel{\xb7}{Ex}}_{46}-{\stackrel{\xb7}{Ex}}_{44}}{{\stackrel{\xb7}{Ex}}_{43}-{\stackrel{\xb7}{Ex}}_{45}}$ |

DP1 | ${\stackrel{\xb7}{W}}_{47}+{\stackrel{\xb7}{Ex}}_{37}={\stackrel{\xb7}{Ex}}_{48}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{DP}1}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{DP}1}$ | ${\eta}_{\mathrm{ex},\mathrm{DP}1}=\frac{{\stackrel{\xb7}{Ex}}_{48}-{\stackrel{\xb7}{Ex}}_{37}}{{\stackrel{\xb7}{W}}_{47}}$ |

DP2 | ${\stackrel{\xb7}{W}}_{49}+{\stackrel{\xb7}{Ex}}_{41}={\stackrel{\xb7}{Ex}}_{50}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{DP}2}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{DP}2}$ | ${\eta}_{\mathrm{ex},\mathrm{DP}2}=\frac{{\stackrel{\xb7}{Ex}}_{50}-{\stackrel{\xb7}{Ex}}_{41}}{{\stackrel{\xb7}{W}}_{49}}$ |

DP3 | ${\stackrel{\xb7}{W}}_{51}+{\stackrel{\xb7}{Ex}}_{45}={\stackrel{\xb7}{Ex}}_{52}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{DP}3}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{DP}3}$ | ${\eta}_{\mathrm{ex},\mathrm{DP}3}=\frac{{\stackrel{\xb7}{Ex}}_{52}-{\stackrel{\xb7}{Ex}}_{45}}{{\stackrel{\xb7}{W}}_{51}}$ |

DOP | ${\stackrel{\xb7}{W}}_{57}+{\stackrel{\xb7}{Ex}}_{58}={\stackrel{\xb7}{Ex}}_{56}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{DOP}}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{DOP}}$ | ${\eta}_{\mathrm{ex},\mathrm{DOP}}=\frac{{\stackrel{\xb7}{Ex}}_{56}-{\stackrel{\xb7}{Ex}}_{58}}{{\stackrel{\xb7}{W}}_{57}}$ |

D | ${\stackrel{\xb7}{Ex}}_{54}+{\stackrel{\xb7}{Ex}}_{55}+{\stackrel{\xb7}{Ex}}_{56}+{\stackrel{\xb7}{Ex}}_{59}={\stackrel{\xb7}{Ex}}_{53}+{\stackrel{\xb7}{Ex}}_{63}+{\stackrel{\xb7}{\mathrm{Ex}}}_{\mathrm{l},\mathrm{D}}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{D}}$ | ${\eta}_{\mathrm{ex},\mathrm{D}}=\frac{{\stackrel{\xb7}{Ex}}_{53}}{{\stackrel{\xb7}{Ex}}_{54}+{\stackrel{\xb7}{Ex}}_{55}+{\stackrel{\xb7}{Ex}}_{56}+{\stackrel{\xb7}{Ex}}_{59}}$ |

CFT | ${\stackrel{\xb7}{Ex}}_{4}={\stackrel{\xb7}{Ex}}_{59}+{\stackrel{\xb7}{Ex}}_{60}+{\stackrel{\xb7}{Ex}}_{\mathrm{l},\mathrm{CFT}}+{\stackrel{\xb7}{Ex}}_{\mathrm{d},\mathrm{CFT}}$ | ${\eta}_{\mathrm{ex},\mathrm{CFT}}=\frac{{\stackrel{\xb7}{Ex}}_{59}}{{\stackrel{\xb7}{Ex}}_{4}}$ |