Numerical Modeling of Bifacial PV String Performance: Perimeter Effect and Influence of Uniaxial Solar Trackers
Abstract
1. Introduction
2. Methods and Model Description
3. Results and Discussion
3.1. Perimeter Effects
3.2. Latitude Effect
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pujari N, S.; Cellere, G.; Falcon, T.; Hage, F.; Zwegers, M.; Bernreuter, J.; Haase, J.; Yakovlev, S.; Coletti, G.; Romijn, I.; et al. International Technology Roadmap for Photovoltaic (ITRPV) Results 2017 Including Maturity Report 2018 Ninth Edition, September 2018 ITRPV. 2018. Available online: https://pv.vdma.org/en/ (accessed on 16 February 2020).
- Yusufoglu, U.A.; Lee, T.H.; Pletzer, T.; Halm, A.; Koduvelikulathu, L.; Comparotto, C.; Kopecek, R.; Kurz, H. Simulation of Energy Production by Bifacial Modules with Revision of Ground Reflection. Energy Procedia 2014, 55. [Google Scholar] [CrossRef]
- Yusufoglu, U.A.; Pletzer, T.M.; Koduvelikulathu, L.J.; Comparotto, C.; Kopecek, R.; Kurz, H. Analysis of the Annual Performance of Bifacial Modules and Optimization Methods. IEEE J. Photovolt. 2015, 5, 320–328. [Google Scholar] [CrossRef]
- Shoukry, I.; Libal, J.; Kopecek, R.; Wefringhaus, E.; Werner, J. Modelling of Bifacial Gain for Stand-alone and in-field Installed Bifacial PV Modules. Energy Procedia 2016, 92, 600–608. [Google Scholar] [CrossRef]
- Appelbaum, J. Bifacial photovoltaic panels field. Renew. Energy 2016, 85, 338–343. [Google Scholar] [CrossRef]
- Hansen, C.W.; Riley, D.M.; Deline, C.; Toor, F.; Stein, J.S. A Detailed Performance Model for Bifacial PV Modules. In Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 25–29 September 2017. [Google Scholar] [CrossRef]
- Deline, C.; MacAlpine, S.; Marion, B.; Toor, F.; Asgharzadeh, A.; Stein, J.S. Assessment of Bifacial Photovoltaic Module Power Rating Methodologies—Inside and Out. IEEE J. Photovolt. 2017, 7, 575–580. [Google Scholar] [CrossRef]
- Sun, X.; Khan, M.R.; Deline, C.; Alam, M.A. Optimization and performance of bifacial solar modules: A global perspective. Appl. Energy 2018, 212, 1601–1610. [Google Scholar] [CrossRef]
- Chudinzow, D.; Haas, J.; Díaz-Ferrán, G.; Moreno-Leiva, S.; Eltrop, L. Simulating the energy yield of a bifacial photovoltaic power plant. Sol. Energy 2019, 183, 812–822. [Google Scholar] [CrossRef]
- Ricco Galluzzo, F.; Canino, A.; Gerardi, C.; Lombardo, S.A. A new model for predicting bifacial PV modules performance: First validation results. In Proceedings of the 46th IEEE Photovoltaic Specialists Conference (PVSC 46), Chicago, IL, USA, 16–21 June 2019. [Google Scholar]
- Katsaounis, T.; Kotsovos, K.; Gereige, I.; Al-Saggaf, A.; Tzavaras, A. 2D simulation and performance evaluation of bifacial rear local contact c-Si solar cells under variable illumination conditions. Sol. Energy 2017, 158, 34–41. [Google Scholar] [CrossRef][Green Version]
- Katsaounis, T.; Kotsovos, K.; Gereige, I.; Basaheeh, A.; Abdullah, M.; Khayat, A.; Al-Habshi, E.; Al-Saggaf, A.; Tzavaras, A.E. Performance assessment of bifacial c-Si PV modules through device simulations and outdoor measurements. Renew. Energy 2019, 143, 1285–1298. [Google Scholar] [CrossRef]
- Pvsyst Photovoltaic Software. Available online: https://www.pvsyst.com/help/bifacial_systems.htm (accessed on 16 February 2020).
- Cai, W.; Yuan, S.; Sheng, Y.; Duan, W.; Wang, Z.; Chen, Y.; Yang, Y.; Pietro, P.; Altermatt, P.P.; Verlinden, P.J.; et al. 22.2% efficiency n-type PERT solar cell. Energy Procedia 2016, 92, 399–403. [Google Scholar] [CrossRef]
- Neville, R.C. Solar energy collector orientation and tracking mode. Sol. Energy 1978, 20, 7–11. [Google Scholar] [CrossRef]
- Nann, S. Potentials for tracking photovoltaic systems and V-troughs in moderate climates. Sol. Energy 1990, 45, 385–393. [Google Scholar] [CrossRef]
- Poulek, V.; Libra, M. New solar tracker. Sol. Energy Mater. Sol. Cells 1998, 51, 113–120. [Google Scholar] [CrossRef]
- Lorenzo, E.; Pérez, M.; Ezpeleta, A.; Acedo, J. Design of tracking photovoltaic systems with a single vertical axis. Prog. Photovolt. 2002, 10, 533–543. [Google Scholar] [CrossRef]
- Abdallah, S. The effect of using sun tracking systems on the voltage–current characteristics and power generation of flat plate photovoltaics. Energy Convers. Manag. 2004, 45, 1671–1679. [Google Scholar] [CrossRef]
- Al-Mohamad, A. Efficiency improvements of photo-voltaic panels using a Sun-tracking system. Appl. Energy 2004, 79, 345–354. [Google Scholar] [CrossRef]
- Bione, J.; Vilela, O.C.; Fraidenraich, N. Comparison of the performance of PV water pumping systems driven by fixed, tracking and V-trough generators. Sol. Energy 2004, 76, 703–711. [Google Scholar] [CrossRef]
- Karimov, K.S.; Saqib, M.A.; Akhter, P.; Ahmed, M.M.; Chattha, J.A.; Yousafzai, S.A. A simple photo-voltaic tracking system. Sol. Energy Mater. Sol. Cells 2005, 87, 49–59. [Google Scholar] [CrossRef]
- Tomson, T. Discrete two-positional tracking of solar collectors. Renew. Energy 2008, 33, 400–405. [Google Scholar] [CrossRef]
- Mousazadeh, H.; Keyhani, A.; Javadi, A.; Mobli, H.; Abrinia, K.; Sharifi, A. A review of principle and sun-tracking methods for maximizing solar systems output. Renew. Sustain. Energy Rev. 2009, 13, 1800–1818. [Google Scholar] [CrossRef]
- Chin, C.S.; Babu, A.; McBride, W. Design, modeling and testing of a standalone single axis active solar tracker using MATLAB/Simulink. Renew. Energy 2011, 36, 3075–3090. [Google Scholar] [CrossRef]
- Bahrami, A.; Okoye, C.O.; Atikol, U. The effect of latitude on the performance of different solar trackers in Europe and Africa. Appl. Energy 2016, 177, 896–906. [Google Scholar] [CrossRef]
- Moradi, H.; Abtahi, A.; Messenger, R. Annual performance comparison between tracking and fixed photovoltaic arrays. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 3179–3183. [Google Scholar] [CrossRef]
- Vaca, J.S.D.; Ordóñez, F.; Morales, C. Improvements of Photovoltaic Systems by using Solar Tracking in Equatorial Regions. In Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 25–29 September 2017; pp. 2352–2357. [Google Scholar] [CrossRef]
- Lindsay, A.; Chiodetti, M.; Binesti, D.; Mousel, S.; Lutun, E.; Radouane, K.; Christopherson, J. Modelling of Single-Axis Tracking Gain for Bifacial PV Systems. In Proceedings of the 32nd European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, 20–24 June 2016; pp. 1610–1617. [Google Scholar] [CrossRef]
- Pelaez, S.A.; Deline, C.; Greenberg, P.; Stein, J.S.; Kostuk, R.K. Model and Validation of Single-Axis Tracking with Bifacial PV. IEEE J. Photovolt. 2019, 9, 715–721. [Google Scholar] [CrossRef]
- Berrian, D.; Libal, J.; Klenk, M.; Nussbaumer, H.; Kopecek, R. Performance of Bifacial PV Arrays With Fixed Tilt and Horizontal Single-Axis Tracking: Comparison of Simulated and Measured Data. IEEE J. Photovolt. 2019, 1–7. [Google Scholar] [CrossRef]
- Jain, D.; Lalwani, M. A review on optimal inclination angles for solar arrays. Int. J. Renew. Energy Res. 2017, 7, 1053–1061. [Google Scholar]
- Lorenzo, E. Energy Collected and Delivered by PV Modules. In Handbook of Photovoltaic Science and Engineering; Luque, A., Hegedus, S., Eds.; Wiley: Chichester, UK, 2003; p. 905. [Google Scholar]
- American Society of Heating, Refrigerating and Engineers. Air-Conditioning. ASHRAE Handbook, 1985 Fundamentals: An Instrument of Service Prepared for the Profession Containing Technical Information; The Society: Atlanta, GA, USA, 1985. [Google Scholar]
- Global Solar Atlas. Available online: https://globalsolaratlas.info/ (accessed on 16 February 2020).
- Liu, B.; Jordan, R. Daily insolation on surfaces tilted towards equator. Ashrae J. 1961, 10, 53–59. [Google Scholar]
- Mousavi Maleki, S.A.; Hizam, H.; Gomes, C. Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited. Energies 2017, 10, 134. [Google Scholar] [CrossRef]
- Wolframresearch scinceworld.wolfram.com. Available online: http://scienceworld.wolfram.com/physics/FresnelEquations.html (accessed on 16 February 2020).
- Khoo, Y.S.; Walsh, T.M.; Aberle, A.G. Novel Method for Quantifying Optical Losses of Glass and Encapsulant Materials of Silicon Wafer Based PV Modules. Energy Procedia 2012, 15, 403–412. [Google Scholar] [CrossRef][Green Version]
- Xiao, W.; Dunford, W.G.; Capel, A. A novel modeling method for photovoltaic cells. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, 20–25 June 2004; Volume 3, pp. 1950–1956. [Google Scholar] [CrossRef]
- Ross, R.G., Jr. Flat-plate photovoltaic array design optimization. In Proceedings of the 14th Photovoltaic Specialists Conference, San Diego, CA, USA, 7–10 January 1980; pp. 1126–1132. [Google Scholar]
- Weather Underground. Available online: https://www.wunderground.com/ (accessed on 16 February 2020).
Ifront | Global Irradiance on PV Module Front Surface |
---|---|
Ib,β | Beam component of Ifront |
Id,β | Diffuse component of Ifront |
Ir,β | Reflected component of Ifront |
β | PV module tilt angle |
IH | Ifront for β = 0; |
α | Ground albedo |
Iback | Incident radiation over the bifacial PV device rear surface |
Isc,front | Front side component of PV cell short circuit current |
Isc,back | Back side component of PV cell short circuit current |
Acell | PV cell area |
γ | Incidence angle of the solar radiation on the PV module front |
PV cell semiconductor bandgap wavelength | |
EQEfront | External Quantum Efficiency for the PV cell front side |
EQEback | External Quantum Efficiency for the PV cell back side |
dΩ | Solid angle element |
shadow | Shadow function |
As | Ground area |
Tamb | Ambient temperature |
Tmodule | PV module temperature |
NOCT | Nominal Operating Conditions Temperature |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricco Galluzzo, F.; Zani, P.E.; Foti, M.; Canino, A.; Gerardi, C.; Lombardo, S. Numerical Modeling of Bifacial PV String Performance: Perimeter Effect and Influence of Uniaxial Solar Trackers. Energies 2020, 13, 869. https://doi.org/10.3390/en13040869
Ricco Galluzzo F, Zani PE, Foti M, Canino A, Gerardi C, Lombardo S. Numerical Modeling of Bifacial PV String Performance: Perimeter Effect and Influence of Uniaxial Solar Trackers. Energies. 2020; 13(4):869. https://doi.org/10.3390/en13040869
Chicago/Turabian StyleRicco Galluzzo, Fabio, Pier Enrico Zani, Marina Foti, Andrea Canino, Cosimo Gerardi, and Salvatore Lombardo. 2020. "Numerical Modeling of Bifacial PV String Performance: Perimeter Effect and Influence of Uniaxial Solar Trackers" Energies 13, no. 4: 869. https://doi.org/10.3390/en13040869
APA StyleRicco Galluzzo, F., Zani, P. E., Foti, M., Canino, A., Gerardi, C., & Lombardo, S. (2020). Numerical Modeling of Bifacial PV String Performance: Perimeter Effect and Influence of Uniaxial Solar Trackers. Energies, 13(4), 869. https://doi.org/10.3390/en13040869