# Assessment of a Hydrokinetic Energy Converter Based on Vortex-Induced Angular Oscillations of a Cylinder

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Physical and Mathematical Models

#### 2.1. Physical System

#### 2.2. Kinematics

#### 2.3. Structural Dynamics

#### 2.4. Hydrodynamics

#### 2.5. Flow–Structure Interaction

#### 2.6. Power Extraction Efficiency

## 3. Results

#### 3.1. Effect of Arm Length

#### 3.2. Effect of Mass Ratio

#### 3.3. Effect of Damping Ratio

## 4. Discussion

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Karimirad, M. Offshore Energy Structures: For Wind Power, Wave Energy and Hybrid Marine Platforms; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Karimirad, M.; Michailides, C. V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology. Renew. Energy
**2015**, 83, 126–143. [Google Scholar] [CrossRef][Green Version] - Collu, M.; Borg, M. Design of floating offshore wind turbines. In Offshore Wind Farms; Ng, C., Ran, L., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 359–385. [Google Scholar] [CrossRef]
- Kong, F.; Su, W.; Liu, H.; Collu, M.; Lin, Z.; Chen, H.; Zheng, X. Investigation on PTO control of a combined axisymmetric buoy-WEC(CAB-WEC). Ocean Eng.
**2019**, 188, 106245. [Google Scholar] [CrossRef] - Bernitsas, M.M.; Raghavan, K.; Ben-Simon, Y.Y.; Garcia, E.M. VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow. ASME J. Offshore Mech. Arct. Eng.
**2008**, 130, 041101. [Google Scholar] [CrossRef] - Lee, J.; Bernitsas, M. High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter. Ocean Eng.
**2011**, 38, 1697–1712. [Google Scholar] [CrossRef] - Barrero-Gil, A.; Pindado, S.; Avila, S. Extracting energy from Vortex-Induced Vibrations: A parametric study. Appl. Math. Modell.
**2012**, 36, 3153–3160. [Google Scholar] [CrossRef][Green Version] - Hobbs, W.B.; Hu, D.L. Tree-inspired piezoelectric energy harvesting. J. Fluids Struct.
**2012**, 28, 103–114. [Google Scholar] [CrossRef] - Wang, D.A.; Chiu, C.Y.; Pham, H.T. Electromagnetic energy harvesting from vibrations induced by Kármán vortex street. Mechatronics
**2012**, 22, 746–756. [Google Scholar] [CrossRef] - Grouthier, C.; Michelin, S.; Bourguet, R.; Modarres-Sadeghi, Y.; De Langre, E. On the efficiency of energy harvesting using vortex-induced vibrations of cables. J. Fluids Struct.
**2014**, 49, 427–440. [Google Scholar] [CrossRef][Green Version] - Liu, J.; Bernitsas, M.M. Envelope of Power Harvested by a Single-Cylinder VIVACE Converter. In Proceedings of the ASME 34th International Conference on Ocean, Offshore, and Arctic Engineering, St. John’s, NL, Canada, 31 May–5 June 2015; Volume 9. [Google Scholar] [CrossRef]
- Dai, H.L.; Abdelkefi, A.; Yang, Y.; Wang, L. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations. Appl. Phys. Lett.
**2016**, 108, 53902. [Google Scholar] [CrossRef] - Zhang, J.; Liu, F.; Lian, J.; Yan, X.; Ren, Q. Flow Induced Vibration and Energy Extraction of an Equilateral Triangle Prism at Different System Damping Ratios. Energies
**2016**, 9, 938. [Google Scholar] [CrossRef][Green Version] - Kim, E.S.; Bernitsas, M.M. Performance prediction of horizontal hydrokinetic energy converter using multiple-cylinder synergy in flow induced motion. Appl. Energy
**2016**, 170, 92–100. [Google Scholar] [CrossRef][Green Version] - Bhattacharya, A.; Shahajhan, S.S.S. Power extraction from vortex-induced angular oscillations of elliptical cylinder. J. Fluids Struct.
**2016**, 63, 140–154. [Google Scholar] [CrossRef] - Soti, A.K.; Thompson, M.C.; Sheridan, J.; Bhardwaj, R. Harnessing electrical power from vortex-induced vibration of a circular cylinder. J. Fluids Struct.
**2017**, 70, 360–373. [Google Scholar] [CrossRef][Green Version] - Chandran, V.M.S.; Janardhanan, S.; Menon, V. Numerical Study on the Influence of Mass and Stiffness Ratios on the Vortex Induced Motion of an Elastically Mounted Cylinder for Harnessing Power. Energies
**2018**, 11, 2580. [Google Scholar] [CrossRef][Green Version] - Ding, L.; Zou, Q.; Zhang, L.; Wang, H. Research on Flow-Induced Vibration and Energy Harvesting of Three Circular Cylinders with Roughness Strips in Tandem. Energies
**2018**, 11, 2977. [Google Scholar] [CrossRef][Green Version] - Barrero-Gil, A.; Vicente-Ludlam, D.; Gutierrez, D.; Sastre, F. Enhance of Energy Harvesting from Transverse Galloping by Actively Rotating the Galloping Body. Energies
**2019**, 13, 91. [Google Scholar] [CrossRef][Green Version] - Lu, Z.; Wen, Q.; He, X.; Wen, Z. A Flutter-Based Electromagnetic Wind Energy Harvester: Theory and Experiments. Appl. Sci.
**2019**, 9, 4823. [Google Scholar] [CrossRef][Green Version] - Naseer, R.; Dai, H.; Abdelkefi, A.; Wang, L. Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics. Energies
**2019**, 13, 71. [Google Scholar] [CrossRef][Green Version] - Bearman, P.W. Vortex shedding from oscillating bluff bodies. Ann. Rev. Fluid Mech.
**1984**, 16, 195–222. [Google Scholar] [CrossRef] - Sarpkaya, T. A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct.
**2004**, 19, 389–447. [Google Scholar] [CrossRef] - Williamson, C.; Govardhan, R. Vortex-Induced Vibrations. Ann. Rev. Fluid Mech.
**2004**, 36, 413–455. [Google Scholar] [CrossRef][Green Version] - Arionfard, H.; Nishi, Y. Experimental investigation of a drag assisted vortex-induced vibration energy converter. J. Fluids Struct.
**2017**, 68, 48–57. [Google Scholar] [CrossRef] - Konstantinidis, E. A new forced-excitation model for the prediction of maximum response in vortex-induced vibration. In Proceedings of the 11th International Conference on Flow-Induced Vibration, TNO, The Hague, The Netherlands, 4–6 July 2016. [Google Scholar]
- Konstantinidis, E. A physics-based model for VIV analysis. In Proceedings of the ASME 36th International Conference Offshore Mechanics and Arctic Engineering, Trondheim, Norway, 25–30 June 2017; Volume 2, p. OMAE2017-62483. [Google Scholar] [CrossRef]
- Konstantinidis, E.; Zhao, J.; Leontini, J.; Lo Jacono, D.; Sheridan, J. Excitation and Damping Fluid Forces on a Cylinder Undergoing Vortex-Induced Vibration. Front. Phys.
**2019**, 7, 185. [Google Scholar] [CrossRef][Green Version] - Morison, J.R.; O’Brien, M.P.; Johnson, J.W.; Schaaf, S.A. The force exerted by surface waves on piles. AIME Petrol. Trans.
**1950**, 189, 149–154. [Google Scholar] [CrossRef] - Howe, M.S. Hydrodynamics and Sound; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Shampine, L.F.; Reichelt, M.W. The MATLAB ODE Suite. SIAM J. Sci. Comput.
**1997**, 18, 1–22. [Google Scholar] [CrossRef][Green Version] - Konstantinidis, E. Added mass of a circular cylinder oscillating in a free stream. Proc. R. Soc. Lond. A
**2013**, 469, 20130135. [Google Scholar] [CrossRef] - Griffin, O.M. A universal Strouhal number for the ‘locking-on’ of vortex shedding to the vibrations of bluff cylinders. J. Fluid Mech.
**1978**, 85, 591–606. [Google Scholar] [CrossRef]

**Figure 3.**Vector diagram of the hydrodynamic forces acting on a cylinder that performs angular oscillations about the pivot point.

**Figure 4.**Contours of ${\theta}_{o}$ and $\eta $ as functions of ${L}^{*}$ and ${U}^{*}$ for ${m}^{*}=5$ and $\zeta =0.01$.

**Figure 5.**Contours of ${\theta}_{o}$ and $\eta $ as functions of ${L}^{*}$ and ${U}^{*}$ for ${m}^{*}=50$ and $\zeta =0.01$.

**Figure 6.**Contours of ${\theta}_{o}$ and $\eta $ as functions of ${L}^{*}$ and ${U}^{*}$ for ${m}^{*}=5$ and $\zeta =0.1$.

**Figure 7.**Contours of ${\theta}_{o}$ and $\eta $ as functions of ${L}^{*}$ and ${U}^{*}$ for ${m}^{*}=50$ and $\zeta =0.1$.

**Figure 8.**Contours of ${\theta}_{o}$ and $\eta $ as functions of ${U}^{*}$ and ${m}^{*}$ for ${L}^{*}=0.8$ and $\zeta =0.01$.

**Figure 9.**Contours of ${\theta}_{o}$ and $\eta $ as functions of ${U}^{*}$ and ${m}^{*}$ for ${L}^{*}=0.8$ and $\zeta =0.1$.

**Figure 10.**Contours of ${\theta}_{o}$ and $\eta $ as functions of ${U}^{*}$ and $\zeta $ for ${L}^{*}=0.8$ and ${m}^{*}=75$.

**Figure 11.**Contours of ${\theta}_{o}$ and $\eta $ as functions of ${U}^{*}$ and $\zeta $ for ${L}^{*}=0.8$ and ${m}^{*}=5$.

${\mathit{C}}_{\mathit{A}}$ | ${\mathit{C}}_{\mathit{D}}$ | ${\mathit{C}}_{\mathit{L}}$ | ${\mathit{S}}_{\mathit{f}}$ |
---|---|---|---|

1.00 | 1.35 | 1.50 | 0.155 |

${\mathit{m}}^{*}$ | $\mathit{\zeta}$ | ${\mathit{m}}^{*}\mathit{\zeta}$ | $\mathit{\eta}$ |
---|---|---|---|

74 | 0.01 | 0.74 | 0.188 |

5.24 | 0.1 | 0.524 | 0.195 |

75 | 0.0083 | 0.6225 | 0.190 |

5 | 0.1 | 0.5 | 0.194 |

**Table 3.**Estimated power output per unit span of the cylinder generated by the novel hydro-kinetic energy converter.

${\mathit{U}}_{\mathit{\infty}}$ (m/s) | D (cm) | m (kg/m) | P (mW/m) |
---|---|---|---|

0.1 | 1 | 0.39 | 1 |

0.1 | 5 | 9.82 | 5 |

0.1 | 25 | 245.4 | 25 |

0.5 | 1 | 0.39 | 125 |

0.5 | 5 | 9.82 | 625 |

0.5 | 25 | 245.4 | 3125 |

1.0 | 1 | 0.39 | 1000 |

1.0 | 5 | 9.82 | 5000 |

1.0 | 25 | 245.4 | 25,000 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Malefaki, I.; Konstantinidis, E. Assessment of a Hydrokinetic Energy Converter Based on Vortex-Induced Angular Oscillations of a Cylinder. *Energies* **2020**, *13*, 717.
https://doi.org/10.3390/en13030717

**AMA Style**

Malefaki I, Konstantinidis E. Assessment of a Hydrokinetic Energy Converter Based on Vortex-Induced Angular Oscillations of a Cylinder. *Energies*. 2020; 13(3):717.
https://doi.org/10.3390/en13030717

**Chicago/Turabian Style**

Malefaki, Iro, and Efstathios Konstantinidis. 2020. "Assessment of a Hydrokinetic Energy Converter Based on Vortex-Induced Angular Oscillations of a Cylinder" *Energies* 13, no. 3: 717.
https://doi.org/10.3390/en13030717