Analysis of Energy Transition Impact on the Low-Voltage Network Using Stochastic Load and Generation Models †
Abstract
:1. Introduction
1.1. Related Work
1.2. Contributions
1.3. Paper Outline
2. Stochastic Profile Modeling
2.1. Methodology
2.2. Residential Load
2.2.1. Data and Preprocessing
2.2.2. Model Fitting
2.2.3. Profile Generation and Evaluation
2.3. Photovoltaics
2.3.1. Data and Model Fit
2.3.2. Model Fitting
2.3.3. Profile Generation and Evaluation
2.4. Electric Vehicles
2.4.1. Data and Model Fit
2.4.2. Model Fitting
2.4.3. Profile Generation and Evaluation
2.5. Heat Pumps
2.5.1. Data and Preprocessing
2.5.2. Model Fitting
2.5.3. Profile Generation and Evaluation
3. Evaluating a Large Low Voltage Electricity Network
4. Case Study: Congestion in a Large Real-World Low-Voltage Power Grid
4.1. General Approach and Scenario Description
4.2. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- U.S. Energy Information Administration. International Energy Outlook 2016; U.S. Energy Information Administration: Washington, DC, USA, 2016; Volume 0484, pp. 1–2. [Google Scholar]
- Veldman, E.; Gibescu, M.; Slootweg, H.J.G.; Kling, W.L. Scenario-based modelling of future residential electricity demands and assessing their impact on distribution grids. Energy Policy 2013, 56, 233–247. [Google Scholar] [CrossRef]
- Velander, S. Methods of operational analysis applied to distribution of electric power. Tek. Tidskrif 1952, 82, 293–299. [Google Scholar]
- Navarro-Espinosa, A.; Ochoa, L.F. Probabilistic Impact Assessment of Low Carbon Technologies in LV Distribution Systems. IEEE Trans. Power Syst. 2016, 31, 2192–2203. [Google Scholar] [CrossRef]
- Dickert, J.; Schegner, P. A Time Series Probabilistic Synthetic Load Curve Model for RESIDENTIAL Customers. In Proceedings of the 2011 IEEE PES PowerTech, Trondheim, Norway, 19–23 June 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Collin, A.J.; Tsagarakis, G.; Kiprakis, A.E. Development of Low-Voltage Load Models for the Residential Load Sector. IEEE Trans. Power Syst. 2014, 29, 2180–2188. [Google Scholar] [CrossRef]
- Grandjean, A.; Adnot, J.; Binet, G. A review and an analysis of the residential electric load curve models. Renew. Sustain. Energy Rev. 2012, 16, 6539–6565. [Google Scholar] [CrossRef]
- Labeeuw, W.; Deconinck, G. Residential electrical load model based on mixture model clustering and markov models. IEEE Trans. Ind. Inform. 2013, 9, 1561–1569. [Google Scholar] [CrossRef]
- Evangelopoulos, V.; Karafotis, P.; Georgilakis, P. Probabilistic Spatial Load Forecasting Based on Hierarchical Trending Method. Energies 2020, 13, 4643. [Google Scholar] [CrossRef]
- Navarro-Espinosa, A.; Mancarella, P. Probabilistic modeling and assessment of the impact of electric heat pumps on low voltage distribution networks. Appl. Energy 2014, 127, 249–266. [Google Scholar] [CrossRef]
- Veldman, E.; Verzijlbergh, R.A. Distribution grid impacts of smart electric vehicle charging from different perspectives. IEEE Trans. Smart Grid 2015, 6, 333–342. [Google Scholar] [CrossRef]
- Lo Franco, F.; Ricco, M.; Mandrioli, R.; Grandi, G. Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization. Energies 2020, 13, 5003. [Google Scholar] [CrossRef]
- Lojowska, A.; Kurowicka, D.; Papaefthymiou, G.; Van Der Sluis, L. Stochastic modeling of power demand due to EVs using copula. IEEE Trans. Power Syst. 2012, 27, 1960–1968. [Google Scholar] [CrossRef]
- Pashajavid, E.; Aliakbar Golkar, M. Copula-based multivariate stochastic modeling of load demand due to plug-in electric vehicles in order to be integrated in distribution system planning. In Proceedings of the CIRED 22nd International Conference on Electricity Distribution, Stockholm, Sweden, 10–13 June 2013; Volume 0333, pp. 10–13. [Google Scholar]
- Widén, J.; Wäckelgård, E. A high-resolution stochastic model of domestic activity patterns and electricity demand. Appl. Energy 2010, 87, 1880–1892. [Google Scholar] [CrossRef]
- Mu, Y.; Wu, J.; Jenkins, N.; Jia, H.; Wang, C. A Spatial-Temporal model for grid impact analysis of plug-in electric vehicles. Appl. Energy 2014, 114, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, H.; Guan, J.; Rao, Z. Agent-based modeling and simulation of stochastic heat pump usage behavior in residential communities. In Building Simulation; Springer: Berlin, Germany, 2020; pp. 1–19. [Google Scholar]
- Nelsen, R.B. An Introduction to Copulas; Springer: Berlin, Germany, 2013; Volume 53, p. 276. [Google Scholar] [CrossRef]
- Wang, H.; Zou, B. Probabilistic computational model for correlated wind speed, solar irradiation, and load using Bayesian network. IEEE Access 2020, 8, 51653–51663. [Google Scholar] [CrossRef]
- Philippe, W.P.J.; Zhang, S.; Eftekharnejad, S.; Ghosh, P.K.; Varshney, P.K. Mixed Copula-Based Uncertainty Modeling of Hourly Wind Farm Production for Power System Operational Planning Studies. IEEE Access 2020, 8, 138569–138583. [Google Scholar] [CrossRef]
- Cui, M.; Krishnan, V.; Hodge, B.M.; Zhang, J. A copula-based conditional probabilistic forecast model for wind power ramps. IEEE Trans. Smart Grid 2018, 10, 3870–3882. [Google Scholar] [CrossRef]
- Bina, M.T.; Ahmadi, D. Aggregate domestic demand modelling for the next day direct load control applications. IET Gener. Transm. Distrib. 2014, 8, 1306–1317. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Q.; Kuang, J.; Xie, K.; Du, W. Modeling multivariate dependence by nonparametric pair-copula construction in composite system reliability evaluation. Int. J. Electr. Power Energy Syst. 2020, 124, 106373. [Google Scholar] [CrossRef]
- Bernards, R.; Morren, J.; Slootweg, J.G. Statistical Modelling of Load Profiles Incorporating Correlations using Copula. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Torino, Italy, 26–29 September 2017. [Google Scholar]
- Papaefthymiou, G.; Kurowicka, D. Using copulas for modeling stochastic dependence in power system uncertainty analysis. IEEE Trans. Power Syst. 2009, 24, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Zamo, M.; Naveau, P. Estimation of the continuous ranked probability score with limited information and applications to ensemble weather forecasts. Math. Geosci. 2018, 50, 209–234. [Google Scholar] [CrossRef] [Green Version]
- Göçken, M.; Özçalıcı, M.; Boru, A.; Dosdoğru, A.T. Integrating metaheuristics and artificial neural networks for improved stock price prediction. Expert Syst. Appl. 2016, 44, 320–331. [Google Scholar] [CrossRef]
- Liander, N.V. Smart Meter Data; Liander N.V., Duiven, The Netherlands, 2013. Available online: https://www.liander.nl/over-liander/innovatie/open-data/data (accessed on 9 October 2020).
- Stephen, B.; Mutanen, A.J.; Galloway, S.; Burt, G.; Jarventausta, P. Enhanced load profiling for residential network customers. IEEE Trans. Power Deliv. 2014, 29, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Ciapessoni, E.; Cirio, D.; Pitto, A.; Massucco, S.; Silvestro, F. A novel approach to account for uncertainty and correlations in probabilistic power flow. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe, Istanbul, Turkey, 12–15 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Ye, G.; Nijhuis, M.; Cuk, V.; Cobben, J. Stochastic Residential Harmonic Source Modeling for Grid Impact Studies. Energies 2017, 10, 372. [Google Scholar] [CrossRef] [Green Version]
- KNMI. Daggegevens Van Het Weer in Nederland; KNMI: De Bilt, The Netherlands, 2017. [Google Scholar]
- Benghanem, M. Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia. Appl. Energy 2011, 88, 1427–1433. [Google Scholar] [CrossRef]
- Stine, W.; Harrigan, H. Power from the Sun; John Wiley & Sons: Hoboken, NJ, USA, 1986. [Google Scholar]
- CBS. Onderzoek Verplaatsingen in Nederland 2014; Centraal Bureau voor de Statistiek: Den Haag, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Office of Energy Efficiency and Renewable Energy. Fuel Economy Guide 2017; Technical Report; U.S. Department of Energy: Washington, DC, USA, 2017. [Google Scholar]
- Klaassen, E.A.M.; Asare-Bediako, B.; De Koning, C.P.; Frunt, J.; Slootweg, J.G. Assessment of an algorithm to utilize heat pump flexibility-theory and practice. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015. [Google Scholar] [CrossRef]
- Van Westering, W.; Hellendoorn, H. Low voltage power grid congestion reduction using a community battery: Design principles, control and experimental validation. Int. J. Electr. Power Energy Syst. 2020, 114, 105349. [Google Scholar] [CrossRef]
- Van Westering, W.; Droste, B.; Hellendoorn, H. Combined Medium Voltage and Low Voltage Simulation to Accurately Determine the Location of Voltage Problems in Large Grids. In Proceedings of the 25th International Conference on Electricity Distribution, Madrid, Spain, 3–6 June 2019. [Google Scholar]
- Sereeter, B.; van Westering, W.; Vuik, C.; Witteveen, C. Linear power flow method improved with numerical analysis techniques applied to a very large network. Energies 2019, 12, 4078. [Google Scholar] [CrossRef] [Green Version]
- Sereeter, B.; Vuik, C.; Witteveen, C. Mathematical Formulations and Algorithms for Fast and Robust Power System Simulations. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2020. [Google Scholar]
- Le Nguyen, H. Newton-Raphson method in complex form [power system load flow analysis]. IEEE Trans. Power Syst. 1997, 12, 1355–1359. [Google Scholar] [CrossRef]
- Kersting, W.H. Distribution System Modeling and Analysis; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kirtley, J. 6.061 Introduction to Power Systems Class Notes Chapter 5 Introduction to Load Flow; MIT Open Courseware: Cambridge, MA, USA, 2018. [Google Scholar]
- Sarmiento, J.E.; Alvez, C.A.; de Nadai, N.B.; Zambroni de Souza, A.C.; Carreno, E.M.; Ribeiro, P.F. A Complex-Valued Three-Phase Load Flow for Radial Networks: High-Performance and Low-Voltage Solution Capability. IEEE Trans. Power Syst. 2019, 34, 3241–3249. [Google Scholar] [CrossRef]
- Hekkenberg, M.; Koelemeijer, R. Analyse van Het Voorstel Voor Hoofdlijnen van Het Klimaatakkoord; PBL Netherlands Environmental Assessment Agency: Den Haag, The Netherlands, 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernards, R.; van Westering, W.; Morren, J.; Slootweg, H. Analysis of Energy Transition Impact on the Low-Voltage Network Using Stochastic Load and Generation Models. Energies 2020, 13, 6097. https://doi.org/10.3390/en13226097
Bernards R, van Westering W, Morren J, Slootweg H. Analysis of Energy Transition Impact on the Low-Voltage Network Using Stochastic Load and Generation Models. Energies. 2020; 13(22):6097. https://doi.org/10.3390/en13226097
Chicago/Turabian StyleBernards, Raoul, Werner van Westering, Johan Morren, and Han Slootweg. 2020. "Analysis of Energy Transition Impact on the Low-Voltage Network Using Stochastic Load and Generation Models" Energies 13, no. 22: 6097. https://doi.org/10.3390/en13226097
APA StyleBernards, R., van Westering, W., Morren, J., & Slootweg, H. (2020). Analysis of Energy Transition Impact on the Low-Voltage Network Using Stochastic Load and Generation Models. Energies, 13(22), 6097. https://doi.org/10.3390/en13226097