Two-Stage Active and Reactive Power Coordinated Optimal Dispatch for Active Distribution Network Considering Load Flexibility
Abstract
:1. Introduction
2. Linearized Random ZIP Model Considering Time-Varying Characteristics
3. Two-Stage Active and Reactive Power Coordinated Optimal Dispatch for an Active Distribution Network (ADN)
3.1. Objective Function
3.1.1. Constraints for the Day-Ahead Dispatch
- 1.
- Constraints for the generator
- 2.
- Constraints for the OLTC
- 3.
- Constraints for the flexible load
- 4.
- Constraints for the SVC
- 5.
- Constraints for the output active/reactive power of RES
- 6.
- The day-ahead power flow balance constraints
3.1.2. Constraints for the Day-Here Dispatch
- 1.
- Constraints for the active/reactive power redispatch of generators
- 2.
- Constraints for the redispatch of flexible load
4. Calculation Examples and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Telukunta, V.; Pradhan, J.; Agrawal, A.; Singh, M.; Srivani, S.G. Protection Challenges under Bulk Penetration of Renewable Energy Resources in Power Systems: A review. CSEE J. Power Energy Syst. 2017, 3, 365–379. [Google Scholar] [CrossRef]
- Zheng, W.; Wu, W.; Zhang, B.; Sun, H.; Liu, Y. A Fully Distributed Reactive Power Optimization and Control Method for Active Distribution Networks. IEEE Trans. Smart Grid 2016, 7, 1021–1033. [Google Scholar] [CrossRef]
- Aleksey, Z.; Nikita, T.; Denis, S.; Daniil, P.; Vadim, S. A hybrid artificial neural network for voltage security evaluation in a power system. In Proceedings of the 2015 5th International Youth Conference on Energy, Pisa, Italy, 27–30 May 2015. [Google Scholar] [CrossRef]
- Feng, P.; Xiao, C.; Guo, S.; Zhang, M.; Li, Y.; Ding, K.; Li, W. Voltage sag vulnerable area identification of a distribution grid with multiple sensitive loads. Power Syst. Prot. Control 2020, 6, 36–44. [Google Scholar] [CrossRef]
- Cerbantes, M.C.; Mantovani, J.R.S.; Fernández-Blanco, R.; Ortega-Vazquez, M.A. Optimal Power Flow with Voltage-Sensitive Loads in Distribution Networks. In Proceedings of the IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016. [Google Scholar] [CrossRef]
- Ou-Yang, J.-X.; Long, X.-X.; Du, X.; Diao, Y.-B.; Li, M.-Y. Voltage Control Method for Active Distribution Networks Based on Regional Power Coordination. Energies 2019, 12, 4364. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Li, Y.; Xie, X.; Zheng, Y.; Zhang, Z.; Ai, Q. Allocation plan of voltage sags mitigation devices based on life cycle cost. Power Syst. Prot. Control 2018, 9, 128–134. [Google Scholar] [CrossRef]
- Le, J.; Zhou, Q.; Wang, C.; Zhao, L. Research on distributed optimal control strategy for a distribution network based on the cooperation of DGs and Var compensators. Power Syst. Prot. Control 2020, 48, 38–47. [Google Scholar] [CrossRef]
- Jafari, M.; Naderi, S.B.; Hagh, M.T.; Abapour, M.; Hosseini, S.H. Voltage Sag Compensation of Point of Common Coupling (PCC) Using Fault Current Limiter. IEEE Trans. Power Deliv. 2011, 26, 2638–2646. [Google Scholar] [CrossRef] [Green Version]
- Koutsoukis, N.C.; Georgilakis, P.S. A Chance-Constrained Multistage Planning Method for Active Distribution Networks. Energies 2019, 12, 4154. [Google Scholar] [CrossRef] [Green Version]
- Cong, P.; Tang, W.; Zhang, L.; Zhang, B.; Cai, Y. Day-Ahead Active Power Scheduling in Active Distribution Network Considering Renewable Energy Generation Forecast Errors. Energies 2017, 10, 1291. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Liu, D.; Xiong, X. Research on Stochastic Optimal Operation Strategy of Active Distribution Network Considering Intermittent Energy. Energies 2017, 10, 522. [Google Scholar] [CrossRef] [Green Version]
- Hui, H.; Liu, W.; Su, J. Research on multi-objective optimization planning of the active distribution network. In Proceedings of the China International Conference on Electricity Distribution (CICED), Xi’an, China, 10–13 August 2016. [Google Scholar] [CrossRef]
- Chen, J.-S.; Xu, T.; Zhou, J.-H.; Wang, X.-X.; Li, T.-C.; Lin, J. Voltage profile optimization of active distribution network through a distributed approach. In Proceedings of the International Conference on Renewable Power Generation (RPG 2015), Beijing, China, 17–18 October 2015. [Google Scholar] [CrossRef]
- Martins, V.F.; Borges, C.L.T. Active Distribution Network Integrated Planning Incorporating Distributed Generation and Load Response Uncertainties. IEEE Trans. Power Syst. 2011, 26, 2164–2172. [Google Scholar] [CrossRef]
- Xiao, J.X.; Li, Y.; Tan, Y. MILP model for hosting capacity assessment of distributed generation in distribution networks considering ZIP load model. In Proceedings of the IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 21–23 November 2019. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Y.; Tan, W. Characteristic Fusion Based on Electric Load Modeling. Power Syst. Technol. 2015, 39, 1358–1364. [Google Scholar] [CrossRef]
- Kundur, P. Power System Stability and Control; McGraw Hill: New York, NY, USA, 1994; pp. 377–417. [Google Scholar]
- Zhou, H.Z.; Tang, F.D.; Liu, C. Active Distribution Network Dynamic Reconfiguration and DG Dynamic Control Strategy Considering Time-Variant Load. Power Syst. Technol. 2016, 4, 2423–2430. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Guo, C.Y.; Liu, W.X.; Li, C.H.; Wang, J.W. Multi-Time-Scale Voltage Control and Coordination Correction of Distribution Network Considering Load Characteristics. Autom. Electr. Power Syst. 2017, 41, 51–57. [Google Scholar]
- Ren, J.; Gu, W.; Wang, Y.; Ji, W.; Liu, H.; Cao, G. Multi-time Scale Active and Reactive Power Coordinated Optimal Dispatch in Active Distribution Network Based on Model Predictive Control. Proc. Chin. Soc. Electr. Eng. 2018, 3, 1397–1407. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, M.; Han, X.S. A Two-stage Stochastic Optimization of Unit Commitment Considering Wind Power Based on Scenario Analysis. Power Syst. Prot. Control 2012, 40, 58–67. [Google Scholar]
- Wang, H.B.; Qi, Y.Z.; Wang, C.G.; Huang, Y.H.; Wang, Y.F. Two-Stage Stochastic Optimal Scheduling Model Considering Flexible Load. Power Syst. Technol. 2018, 42, 3669–3675. [Google Scholar] [CrossRef]
- Tian, Z.; Wu, W.; Zhang, B.; Bose, A. Mixed-integer second-order cone programing model for VAR optimization and network reconfiguration in active distribution networks. IET Gener. Transm. Distrib. 2015, 10, 1938–1946. [Google Scholar] [CrossRef]
- Li, P.; Li, F.; Song, X.; Zhang, G. Considering the Flexible Load New Energy Access System Optimization for Spinning Reserve. Power Syst. Technol. 2020. [Google Scholar] [CrossRef]
- Zheng, N.; Ding, X.-Q.; Guan, Z.-C.; Hu, R.-X.; Miao, H. Coordinated optimization of active power and reactive power in distribution network based on scenario method. Power Syst. Technol. 2019, 43, 1640–1651. [Google Scholar] [CrossRef]
- Chen, C.; Wang, F.; Li, C.B.; Liu, P.; Xie, X.H.; Dong, X.Z.; He, R.T. Preventive Reconfiguration of Distribution Networks with Distributed Wind Power. Trans. China Electrotech. Soc. 2013, 29, 172–177. [Google Scholar] [CrossRef]
- Yang, Z.; Zhong, H.; Xia, Q.; Kang, C. Solving OPF Using Linear Approximations: Fundamental Analysis and Numerical Demonstration. IET Gener. Transm. Distrib. 2007, 11, 4115–4125. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, N.; Kang, C.; Xia, Q. A State-Independent Linear Power Flow Model with Accurate Estimation of Voltage Magnitude. IEEE Trans. Power Syst. 2017, 32, 3607–3617. [Google Scholar] [CrossRef]
- Franco, J.F.; Rider, M.J.; Lavorato, M.; Romero, R. A mixed-integer LP model for the optimal allocation of voltage regulators and capacitors in radial distribution systems. Int. J. Electr. Power Energy Syst. 2013, 48, 123–130. [Google Scholar] [CrossRef]
- Alguacil, N.; Motto, A.L.; Conejo, A.J. Transmission expansion planning: A mixed-integer LP approach. IEEE Trans. Power Syst. 2003, 18, 1070–1077. [Google Scholar] [CrossRef] [Green Version]
Cost ($) | Cost 1 | Cost 2 | Cost 3 | Cost 4 |
---|---|---|---|---|
TC | 2317.9 | 2263.4 | 2213.9 | 2075.7 |
DAC | 1970.0 | 1961.3 | 2020.3 | 1972.3 |
RTC | 347.9 | 302.1 | 193.6 | 103.4 |
HSLLC | 336.1 | 292.1 | 188.3 | 94.3 |
RTPNLC | 11.8 | 10 | 5.3 | 9.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Song, X.; Li, Y.; Zeng, Z.; Yong, C.; Sidorov, D.; Lv, X. Two-Stage Active and Reactive Power Coordinated Optimal Dispatch for Active Distribution Network Considering Load Flexibility. Energies 2020, 13, 5922. https://doi.org/10.3390/en13225922
Zhang Y, Song X, Li Y, Zeng Z, Yong C, Sidorov D, Lv X. Two-Stage Active and Reactive Power Coordinated Optimal Dispatch for Active Distribution Network Considering Load Flexibility. Energies. 2020; 13(22):5922. https://doi.org/10.3390/en13225922
Chicago/Turabian StyleZhang, Yu, Xiaohui Song, Yong Li, Zilong Zeng, Chenchen Yong, Denis Sidorov, and Xia Lv. 2020. "Two-Stage Active and Reactive Power Coordinated Optimal Dispatch for Active Distribution Network Considering Load Flexibility" Energies 13, no. 22: 5922. https://doi.org/10.3390/en13225922
APA StyleZhang, Y., Song, X., Li, Y., Zeng, Z., Yong, C., Sidorov, D., & Lv, X. (2020). Two-Stage Active and Reactive Power Coordinated Optimal Dispatch for Active Distribution Network Considering Load Flexibility. Energies, 13(22), 5922. https://doi.org/10.3390/en13225922