# Specific Energy Consumption of a Belt Conveyor System in a Continuous Surface Mine

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

- N
_{e}—electric power of the drive delivered to the conveyor, W; - Q
_{m}—actual mass capacity, $\frac{kg}{s}$; - L—length of the conveyor route, m;
- RTM—motion resistances, N;
- $\sum}m$—total mass of the transported bulk material, kg;
- $\eta $—drive unit efficiency.

- Step 0—real operating conditions—EEC of five belt conveyors;
- Step 1—the decrease in the number of conveyors from five to three by a change in conveyors’ length—two alternative solutions (different belt width and speed), referred to as 1a and 1b;
- Step 2—the decrease in time of idle operation;
- Step 1 + 2—the combination of Steps 1 and 2

## 3. Results

#### 3.1. Analysis of the Specific Energy Consumption for Different Conveyor Design Parameters

#### 3.2. Analysis of the Electric Energy Consumption for the Belt Conveyor Transportation System—Case Study

_{2}emissions. The CO

_{2}factor used for the calculations was 765 kg/MWh [24]. Table 5 shows that the modernization (Steps 1a + 2) resulted in a reduction of around 5000 tons of CO

_{2}for the most effective option.

## 4. Discussion

_{2}emissions. In this field, significant results may be obtained by either active speed control (bulk material: coal) or proper selection of conveyor design parameters (bulk material: copper), which were presented in [10,16].

## 5. Conclusions

- The presented modernization of the transport route leads to energy-related and environmental benefits that allow for more sustainable operation of conveyor belts.
- Improvement was possible because the design solutions were individually selected to match the operational parameters of the conveyor (implementing a specific transportation task) based not only on its impact on energy consumption but, above all, on the relationship between motion resistance and mass capacity efficiency.
- Each modernization leading to a reduction in energy consumption could also be viewed from an environmental perspective. In the most advantageous variation, the modernization would allow a decrease in energy consumption by 27.78%, which results in the reduction of carbon dioxide emissions into the atmosphere by 5097.88 tons per year.

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Soofastaei, A.; Karimpour, E.; Knights, P.; Kizil, M. Energy-efficient loading and hauling operations. In Green Energy and Technology; Springer: Cham, Switzerland, 2018; pp. 121–146. [Google Scholar]
- Zhang, S.; Xia, X. Optimal control of operation efficiency of belt conveyor systems. Appl. Energy
**2010**, 87, 1929–1937. [Google Scholar] [CrossRef] - Holmberg, K.; Kivikytö-Reponen, P.; Härkisaari, P.; Valtonen, K.; Erdemir, A. Global energy consumption due to friction and wear in the mining industry. Tribol. Int.
**2017**, 115, 116–139. [Google Scholar] [CrossRef] - Zhang, S.; Xia, X. Modeling and energy efficiency optimization of belt conveyors. Appl. Energy
**2011**, 88, 3061–3071. [Google Scholar] [CrossRef] [Green Version] - Gładysiewicz, L.; Kawalec, W.; Król, R. Selection of carry Idlers spacing of belt conveyor taking into account random stream of transported bulk material. Eksploat. Niezawodn. Maint. Reliab.
**2016**, 18, 32–37. [Google Scholar] - Gładysiewicz, L.; Konieczna-Fuławka, M. Influence of idler set load distribution on belt rolling resistance. Arch. Min. Sci.
**2019**, 64, 251–259. [Google Scholar] - Schützhold, J.; Benath, K.; Müller, V.; Hofmann, W. Design criteria for energy efficient belt conveyor drives. In Proceedings of the 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014, Ischia, Italy, 18–20 June 2014; IEEE Computer Society: Washington, DC, USA; pp. 1256–1263. [Google Scholar]
- Król, R.; Gladysiewicz, L.; Kaszuba, D.; Kisielewski, W. New Quality Standards of Testing Idlers for Highly Effective Belt Conveyors. IOP Conf. Ser. Earth Environ. Sci.
**2017**, 95, 42055. [Google Scholar] [CrossRef] [Green Version] - Bajda, M.; Hardygóra, M. Laboratory tests of operational durability and energy—Efficiency of conveyor belts. IOP Conf. Ser. Earth Environ. Sci.
**2019**, 261, 12002. [Google Scholar] [CrossRef] - He, D.; Liu, X.; Zhong, B. Sustainable belt conveyor operation by active speed control. Measurement
**2020**, 154, 107458. [Google Scholar] [CrossRef] - Pang, Y.; Lodewijks, G. Improving energy efficiency in material transport systems by fuzzy speed control. In Proceedings of the LINDI 2011—3rd IEEE International Symposium on Logistics and Industrial Informatics, Proceedings, Budapest, Hungary, 25–27 August 2011; pp. 159–164. [Google Scholar]
- Akparibo, A.R.; Normanyo, E. Application of resistance energy model to optimising electric power consumption of a belt conveyor system. Int. J. Electr. Comput. Eng.
**2020**, 10, 2861–2873. [Google Scholar] [CrossRef] - Yang, C.; Liu, J.; Li, H.; Zhou, L. Energy Modeling and Parameter Identification of Dual-Motor-Driven Belt Conveyors without Speed Sensors. Energies
**2018**, 11, 3313. [Google Scholar] [CrossRef] [Green Version] - Gładysiewicz, L.; Migdał, W. Specific energy consumption of belt conveyors. Transp. Przem. Masz. Rob.
**2017**, 4, 5–9. [Google Scholar] - Masaki, M.S.; Zhang, L.; Xia, X. A design approach for multiple drive belt conveyors minimizing life cycle costs. J. Clean. Prod.
**2018**, 201, 526–541. [Google Scholar] [CrossRef] [Green Version] - Shihata, L.; Ebeid, S. Improved energy efficiency in troughed belt conveyors: Selected factors and effects. Int. J. Eng. Tech. Res.
**2015**, 3, 174–180. [Google Scholar] - Sarathbabu Goriparti, N.V.; Murthy, C.S.N.; Aruna, M. Prediction of Energy Efficiency of Main Transportation System Used in Underground Coal Mines—A Statistical Approach. In International Conference on Emerging Trends in Engineering (ICETE); Springer: Cham, Switzerland, 2020; pp. 337–344. [Google Scholar]
- Gładysiewicz, L. Belt Conveyors: Theory and Calculations (in Polish); Wroclaw University of Technology Publishing House: Wrocław, Poland, 2003. [Google Scholar]
- Dworczyńska, M.; Kawalec, W.; Gładysiewicz, L. Model strugi urobku dla potrzeb projektowania przenośników zbiorczych. Transp. Przem. Masz. Rob.
**2012**, 1, 26–30. [Google Scholar] - Kulinowski, P.; Kawalec, W. Program Komputerowy QNK-TT do Wspomagania Projektowania Przenośników Taśmowych. Available online: http://www.EnterTECH.com.pl/QNK (accessed on 24 August 2020).
- Gładysiewicz, L.; Hardygóra, M.; Kawalec, W. Determining belt resistance. Bulk Handl. Today
**2009**, 5, 26–30. [Google Scholar] - Konieczna-Fuławka, M. Metoda Wyznaczania Oporów Toczenia Taśmy po Krążnikach; Wrocław University of Science and Technology: Wroclaw, Poland, 2019. [Google Scholar]
- Król, R. Methods of Testing and Selection of the Belt Conveyor Equipment with Regard to Random Loading of a Transported Bulk Material; Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej M4—Citavi: Wrocław, Poland, 2013; ISBN 978-83-937788-1-2. [Google Scholar]
- Krajowy Ośrodek Bilansowania i Zarządzania Emisjami. Wskaźniki Emisyjności CO
_{2}, SO_{2}, NO_{x}, CO i Pyłu Całkowitego dla Energii Elektrycznej; Instytut Ochrony Środowiska—Państwowy Instytut Badawczy: Warsaw, Poland, 2019. [Google Scholar]

**Figure 1.**Schematic cross-section and a plan view of the lignite surface mine: 1—belt conveyor routes, 2—excavators, 3—spreader; blue lines—overburden mining levels, red lines—lignite mining levels, green lines—in-pit dumping level.

**Figure 2.**Layout of the main conveyor objects [18].

**Figure 3.**Relationship between specific energy consumption of the conveyor and material flow rate for different conveyor design parameters. (Code in the legend represents the belt width, speed, and troughing angle).

**Figure 4.**Relationship between specific energy consumption of the conveyor and material flow rate above 5000 t/h for different conveyor design parameters. (Code in the legend represents the belt width, speed, and troughing angle).

**Figure 5.**Bar chart of the conveyor’s specific energy consumption in belt speed series for conveyors of different design parameters working in four different variants of transported material distribution.

**Figure 6.**Bar chart of the conveyor’s specific energy consumption in trough angle series for conveyors of different design parameters working in four different variants of transported material distribution.

Belt Width, mm | Belt Speed, m/s | Trough Angle, ° | Material Flow Rate, t/h |
---|---|---|---|

1600, 1800 | 4.3, 5.9, 7.5 | 30, 38, 45 | 1000–10,000 ^{1} |

^{1}For a combination of parameters, such as a belt width of 1600 mm and belt speed of 4.3 m/s, the material flow rate, due to technical constraints, is lower than 10,000 t/h.

Conveyor Name | Conveyor Length, m | Belt Width, mm | Belt Speed, m/s | Trough Angle, ° |
---|---|---|---|---|

A | 802 | 1800 | 5.9 | 45 |

B | 732 | |||

C | 773 | |||

D | 1590 | |||

E | 562 | |||

F | 1534 | a: 1800 b: 1600 | 4.3 5.9 | 30 30 |

G | 1335 | |||

H | 1590 |

Capacity, t/h | Variant 1 | Variant 2 | Variant 3 | Variant 4 |
---|---|---|---|---|

1000 | 0.075 | 0.12 | 0.0182 | 0.047 |

2000 | 0.075 | 0.064 | 0.0590 | 0.0556 |

3000 | 0.075 | 0.062 | 0.0681 | 0.0854 |

4000 | 0.1 | 0.062 | 0.1316 | 0.1708 |

5000 | 0.1 | 0.062 | 0.3843 | 0.1925 |

6000 | 0.1 | 0.09 | 0.3238 | 0.2008 |

7000 | 0.25 | 0.09 | 0.015 | 0.1538 |

8000 | 0.075 | 0.15 | 0.00 | 0.0769 |

9000 | 0.075 | 0.15 | 0.00 | 0.0128 |

10,000 | 0.075 | 0.15 | 0.00 | 0.0044 |

**Table 4.**Electric energy consumption and reduction of annual electric energy consumption of the proposed conveyor transportation system.

Step | Configuration of Belt Conveyors | Parameters of Belt Conveyors | Electric Energy Consumption, TWh (Reduction of Electric Energy Consumption) | |||
---|---|---|---|---|---|---|

Variant 1 | Variant 2 | Variant 3 | Variant 4 | |||

0 | 5 | 1800 mm, 5.9 m/s, 45$\xb0$ | 0.023 | 0.024 | 0.022 | 0.022 |

1a | 3 | 1800 mm, 4.3 m/s, 30$\xb0$ | 0.017 (25.12%) | 0.018 (25.64%) | 0.016 (23.98%) | 0.017 (24.45%) |

1b | 1600 mm, 5.9 m/s, 30$\xb0$ | 0.019 (18.97%) | 0.019 (18.91%) | 0.018 (18.73%) | 0.018 (18.66%) | |

2 | 5 | 1800 mm, 5.9 m/s, 45$\xb0$ | 0.022 (3.33%) | 0.023 (3.20%) | 0.021 (3.54%) | 0.022 (3.43%) |

1a + 2 1b + 2 | 3 | 1800 mm, 4.3 m/s, 30$\xb0$ | 0.017 (27.35%) | 0.017 (27.78%) | 0.016 (26.35%) | 0.016 (26.75%) |

1600 mm, 5.9 m/s, 30$\xb0$ | 0.018 (20.78%) | 0.019 (20.65%) | 0.017 (20.66%) | 0.018 (20.53%) |

Step | Configuration of Belt Conveyors | Parameters of Belt Conveyors | Predicted Reduction of Annual CO_{2} Emissions, t | |||
---|---|---|---|---|---|---|

Variant 1 | Variant 2 | Variant 3 | Variant 4 | |||

0 | 5 | 1800 mm, 5.9 m/s, 45$\xb0$ | - | - | - | - |

1a | 3 | 1800 mm, 4.3 m/s, 30$\xb0$ | 4427.74 | 4704.30 | 3973.27 | 4187.04 |

1b | 1600 mm, 5.9 m/s, 30$\xb0$ | 3343.92 | 3469.64 | 3104.55 | 3196.13 | |

2 | 5 | 1800 mm, 5.9 m/s, 45$\xb0$ | 587.37 | 587.36 | 587.37 | 587.36 |

1a + 2 | 3 | 1800 mm, 4.3 m/s, 30$\xb0$ | 4821.32 | 5097.88 | 4366.85 | 4580.63 |

1b + 2 | 1600 mm, 5.9 m/s, 30$\xb0$ | 3663.03 | 3788.75 | 3423.65 | 3515.24 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kawalec, W.; Suchorab, N.; Konieczna-Fuławka, M.; Król, R.
Specific Energy Consumption of a Belt Conveyor System in a Continuous Surface Mine. *Energies* **2020**, *13*, 5214.
https://doi.org/10.3390/en13195214

**AMA Style**

Kawalec W, Suchorab N, Konieczna-Fuławka M, Król R.
Specific Energy Consumption of a Belt Conveyor System in a Continuous Surface Mine. *Energies*. 2020; 13(19):5214.
https://doi.org/10.3390/en13195214

**Chicago/Turabian Style**

Kawalec, Witold, Natalia Suchorab, Martyna Konieczna-Fuławka, and Robert Król.
2020. "Specific Energy Consumption of a Belt Conveyor System in a Continuous Surface Mine" *Energies* 13, no. 19: 5214.
https://doi.org/10.3390/en13195214