# A Study on Axial Compression Performance of Concrete-Filled Steel-Tubular Shear Wall with a Multi-Cavity T-Shaped Cross-Section

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Program

#### 2.1. Specimen Design

#### 2.2. Material Selection and Material Test

#### 2.3. Loading System

## 3. Numbering Rules and Measuring Points for Specimens

## 4. Experimental Phenomena

#### 4.1. TA4-600 Shear Wall Test Phenomenon

#### 4.2. TA5-600 Shear Wall Test Phenomenon

#### 4.3. TA6-600 Shear Wall Test Phenomenon

## 5. Axial Load–Strain Relationship Curve and Ductility Coefficient

No. | Specimen Number | N_{y} (kN) | N_{u} (kN) | N_{y}/N_{u} | Ductility Coefficient |
---|---|---|---|---|---|

1 | TA4-600 | 594.39 | 625.67 | 0.95 | 2.27 |

2 | TA5-600 | 738.22 | 768.98 | 0.96 | 2.15 |

3 | TA6-600 | 886.19 | 913.60 | 0.97 | 1.79 |

## 6. Load–Stress Relationship Curve

## 7. Establishment and Analysis of the Finite Element (FE) Model

#### 7.1. Establishment of Finite Element (FE) Model

_{cu}is the compressive strength of concrete cube (MPa); f

_{ck}is the standard value of concrete axial compressive strength (MPa); ξ is the height of the concrete limit relative to the compression zone; ε

_{0}is the concrete hoop strain; f

_{y}is the steel yield strength (MPa); A

_{s}is the area of the reinforcement (mm

^{2}); and A

_{c}is the cross-sectional area of the concrete (mm

^{2}).

#### 7.2. Finite Element Results and Analysis

#### 7.2.1. Axial Load–Strain Relationship Curve

#### 7.2.2. Final Deformation of the Specimen

#### 7.2.3. Steel Tube and Concrete Interaction

_{u}, the longitudinal stress of concrete was largest in the area near the corner of the cavity, followed by each cavity at the center of the body, and the stress at the midpoint of each cavity web was the smallest. This is because the multi-cavity steel tube has an uneven constraint on the concrete: as the load continues to increase, the lateral deformation increases, and the concrete near the corner of the cavity enters the elastoplastic phase first. It can also be seen from Figure 12b that the longitudinal stress distribution cloud of the No. 1, No. 2, and No. 4 cavities of the T-shaped multi-cavity CFSTSW was similar, while there were different from No. 3 cavities. The reason is that the confinement area is mainly distributed at the corners of the cavity, and the No. 3 cavity occupies a larger enhanced area and a smaller non-enhanced area than the other cavity.

## 8. Bearing Capacity Equation Deduction

_{c}of plain concrete. The axial compression strength of core concrete in constrained area is:

## 9. Conclusions

- It can be drawn from the test phenomenon that there is no obvious rule for the location of local buckling of steel tubes and local crushing of concrete. The failure mode of the T-shaped multi-cavity CFSTSW as mainly multi-wave buckling failure. All parts of the test specimen worked well together with good ductility.
- As the number of cavities increased, the axial compression bearing capacity of the T-shaped multi-cavity CFSTSW increased, but the ductility performance decreased accordingly.
- The three-dimensional finite element analysis results were in good agreement with the experimental results, indicating that the ABAQUS finite element model used in the article can simulate the axial compression performance of the multi-cavity CFSTSW well.
- A practical calculation equation for the bearing capacity of the T-shaped multi-cavity CFSTSW axial load column is proposed, which can provide a reference for the design of axial compression members of T-shaped multi-cavity CFSTSWs.

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

No. | f_{c} (MPa) | f_{s} (MPa) | n | T (mm) | N_{c} (kN) | N_{s} (kN) | Difference Value (%) |
---|---|---|---|---|---|---|---|

TA4-600-1 | 38.17 | 235 | 4 | 2 | 644.34 | 634.37 | 1.548 |

TA4-600-2 | 38.17 | 345 | 4 | 2 | 799.44 | 784.38 | 1.884 |

TA4-600-3 | 38.17 | 235 | 4 | 3 | 810.02 | 816.79 | 0.836 |

TA4-600-4 | 38.17 | 235 | 4 | 4 | 975.69 | 998.10 | 2.296 |

TA4-600-5 | 30.80 | 235 | 4 | 2 | 583.91 | 566.39 | 3.000 |

TA4-600-6 | 44.00 | 235 | 4 | 2 | 692.15 | 685.05 | 1.026 |

TA5-600-1 | 38.17 | 235 | 5 | 2 | 802.49 | 786.44 | 2.000 |

TA5-600-2 | 38.17 | 345 | 5 | 2 | 994.99 | 969.74 | 2.538 |

TA5-600-3 | 38.17 | 235 | 5 | 3 | 1008.12 | 1010.86 | 0.272 |

TA5-600-4 | 38.17 | 235 | 5 | 4 | 1213.74 | 1234.52 | 1.712 |

TA5-600-5 | 30.80 | 235 | 5 | 2 | 726.95 | 702.21 | 3.403 |

TA5-600-6 | 44.00 | 235 | 5 | 2 | 862.25 | 848.51 | 1.594 |

TA5-600-1 | 38.17 | 235 | 6 | 2 | 960.64 | 939.50 | 2.201 |

TA5-600-2 | 38.17 | 345 | 6 | 2 | 1190.54 | 1157.61 | 2.766 |

TA5-600-3 | 38.17 | 235 | 6 | 3 | 1206.22 | 1206.57 | 0.029 |

TA5-600-4 | 38.17 | 235 | 6 | 4 | 1451.79 | 1474.32 | 1.552 |

TA5-600-5 | 30.80 | 235 | 6 | 2 | 869.99 | 838.50 | 3.620 |

TA5-600-6 | 44.00 | 235 | 6 | 2 | 1032.35 | 1015.59 | 1.623 |

## References

- Chiaia, B.; Kumpyak, O.; Placidi, L.; Maksimov, V. Experimental analysis and modeling of two-way reinforced concrete slabs over different kinds of yielding supports under short-term dynamic loading. Eng. Struct.
**2015**, 96, 88–99. [Google Scholar] [CrossRef] - Han, L.-H.; An, Y.-F. Performance of concrete-encased CFST stub columns under axial compression. J. Constr. Steel Res.
**2014**, 93, 62–76. [Google Scholar] [CrossRef] - Ding, F.-X.; Zhu, J.; Cheng, S. Comparative study of stirrup-confined circular concrete-filled steel tubular stub columns under axial loading. Thin-Walled Struct.
**2018**, 123, 294–304. [Google Scholar] [CrossRef] [Green Version] - Portolés, J.M.; Romero, M.L.; Bonet, J.L. Experimental study of high strength concrete-filled circular tubular columns under eccentric loading. J. Constr. Steel Res.
**2011**, 67, 623–633. [Google Scholar] [CrossRef] - Liu, D.; Zuo, J.; Wang, J.; Zhang, D.; Guo, S. Bending failure mechanism and strengthening of concrete-filled steel tubular support. Eng. Struct.
**2019**, 198. [Google Scholar] [CrossRef] - Serras, D.N.; Skalomenos, K.A.; Hatzigeorgiou, G.D. Modeling of circular concrete-filled steel tubes subjected to cyclic lateral loading. Structures
**2016**, 8, 75–93. [Google Scholar] [CrossRef] - Zhou, J.; Li, P.; Guo, N. Seismic performance assessment of a precast concrete-encased CFST composite wall with twin steel tube connections. Eng. Struct.
**2020**, 207. [Google Scholar] [CrossRef] - Ding, F.-X.; Wang, W.-J.; Lu, D.-R. Study on the behavior of concrete-filled square double-skin steel tubular stub columns under axial loading. Structures
**2020**, 23, 665–676. [Google Scholar] [CrossRef] - Ozbakkaloglu, T. Behavior of square and rectangular ultra high-strength concrete-filled FRP tubes under axial compression. Compos. Part B Eng.
**2013**, 54, 97–111. [Google Scholar] [CrossRef] - Qu, Q.-S.; Liu, Q.; Liao, W.-Z. Analysis on compression-bending behavior of concrete-filled rectangular steel column. J. Guangxi Univ.
**2018**, 43, 1149–1160. [Google Scholar] - Wang, Y.-J.; Fan, Z.; Hou, C. Mechanical behavior of rectangular CFST columns under biaxial compression-bending-shearing loading condition. J. Build. Struct.
**2019**, 40, 257–263. [Google Scholar] - Chen, Z.; Jing, C.; Xu, J. Seismic performance of recycled concrete-filled square steel tube columns. Earthq. Eng. Eng. Vib.
**2017**, 16, 119–130. [Google Scholar] [CrossRef] - Xu, J.-J.; Chen, Z.-P.; Xue, J.-Y. Simulation of seismic behavior of square recycled aggregate concrete—Filled steel tubular columns. Constr. Build. Mater.
**2017**, 149, 553–566. [Google Scholar] [CrossRef] - Zhang, Y.; Xu, C.; Lu, X. Experimental study of hysteretic behaviour for concrete-filled square thin-walled steel tubular columns. J. Constr. Steel Res.
**2007**, 63, 317–325. [Google Scholar] [CrossRef] - Scerrato, D.; Giorgio, I.; Madeo, A.; Limam, A.; Darve, F. A simple non-linear model for internal friction in modified concrete. Int. J. Eng. Sci.
**2014**, 80, 136–152. [Google Scholar] [CrossRef] [Green Version] - Giorgio, I.; Scerrato, D. Multi-scale concrete model with rate-dependent internal friction. Eur. J. Environ. Civ. Eng.
**2016**, 21, 821–839. [Google Scholar] [CrossRef] - Du, G.; Zhang, J.; Li, Y. Experimental study on hysteretic model for L-shaped concrete-filled steel tubular column subjected to cyclic loading. Thin-Walled Struct.
**2019**, 144. [Google Scholar] [CrossRef] - Zuo, Z.-L.; Cai, J.; Yang, C. Axial load behavior of L-shaped CFT stub columns with binding bars. Eng. Struct.
**2012**, 37, 88–98. [Google Scholar] [CrossRef] - Zuo, Z.-L.; Cai, J.; Chen, Q.-J. Performance of T-shaped CFST stub columns with binding bars under axial compression. Thin-Walled Struct.
**2018**, 129, 183–196. [Google Scholar] [CrossRef] - Liu, X.; Liu, J.; Yang, Y. Resistance of special-shaped concrete-filled steel tube columns under compression and bending. J. Constr. Steel Res.
**2020**, 169. [Google Scholar] [CrossRef] - Huang, H.; Cha, B.-J.; Yang, C. Mechanical behavior of T-shaped concrete-filled steel ribbed tubular short columns. J. Build. Struct.
**2018**, 39, 132–137. (In Chinese) [Google Scholar] - Fu, X.-Y.; Wu, B.; Di, B. Research on T-shaped stiffener design for concrete-filled rectangular steel tube column. J. Build. Struct.
**2017**, 38, 49–54. [Google Scholar] - Liu, J.; Yang, Y.; Song, H.; Wang, Y. Numerical analysis on seismic behaviors of T-shaped concrete-filled steel tubular columns with reinforcement stiffeners. Adv. Struct. Eng.
**2017**, 21, 1273–1287. [Google Scholar] [CrossRef] - Yang, Y.; Wang, Y.; Fu, F.; Liu, J. Static behavior of T-shaped concrete-filled steel tubular columns subjected to concentric and eccentric compressive loads. Thin-Walled Struct.
**2015**, 95, 374–388. [Google Scholar] [CrossRef] - Li, H.; Sun, H.; Tian, J.; Yang, Q.; Wan, Q. Mechanical and Ultrasonic Testing of Self-Compacting Concrete. Energies
**2019**, 12, 2187. [Google Scholar] [CrossRef] [Green Version] - Li, H.; Sun, H.; Zhang, W.; Gou, H.; Yang, Q. Study on Mechanical Properties of Self-Compacting Concrete and Its Filled in-Line Multi-Cavity Steel Tube Bundle Shear Wall. Energies
**2019**, 12, 3466. [Google Scholar] [CrossRef] [Green Version] - Golewski, G.L. Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition. Energies
**2020**, 13, 2184. [Google Scholar] [CrossRef] - Contrafatto, L.; Cuomo, M.; Greco, L. Meso-scale simulation of concrete multiaxial behaviour. Eur. J. Environ. Civ. Eng.
**2016**, 21, 896–911. [Google Scholar] [CrossRef] - Zhong, S. The Concrete-Filled Steel Tubular Structures, 3rd ed.; Tsinghua University Press: Beijing, China, 2003; pp. 40–51. (In Chinese) [Google Scholar]
- Ding, F.-X.; Fu, L.; Gong, Y.-Z. Behavior of concrete-filled square steel tubular stub columns under axially compressive loading. J. Shenzhen Univ.
**2014**, 31, 583–592. (In Chinese) [Google Scholar] [CrossRef] - Ding, F.-X.; Yu, Z.-W.; Yu, B. Elasto-plastic analysis of circular concrete-filled steel tube stub columns. J. Constr. Steel Res.
**2011**, 67, 1567–1577. [Google Scholar] [CrossRef] - American Institute of Steel Construction ANSI/AISC 341-10. Seismic Provisions for Structural Steel Buildings; American Institute of Steel Construction: Chicago, IL, USA, 2010. [Google Scholar]
- Eurocode 4: Design of Composite Steel and Concrete Structures-Part 1-1: General Rules and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2004.

**Figure 1.**Cross-sectional dimension of T-shaped four-cavity T-shaped concrete-filled steel tube shear wall (CFSTSW) (unit: mm).

**Figure 3.**Deformation pattern of (

**a**) the second surface; (

**b**) the fourth surface; (

**c**) the first surface; (

**d**) Table 4 test specimen.

**Figure 4.**Deformation pattern of (

**a**) the first surface; (

**b**) the second surface; (

**c**) the third surface; (

**d**) the fourth surface of TA5-600 test specimen.

**Figure 5.**Deformation pattern of (

**a**) the third surface; (

**b**) the first surface; (

**c**) the second surface; (

**d**) the fourth surface of the TA6-600 test specimen.

**Figure 8.**Load–stress curve of (

**a**) measuring point on “1–1” surface; (

**b**) measuring point on “2–3” surface; (

**c**) measuring point on “3–2” surface; (

**d**) measuring point on “4–3” surface.

**Figure 9.**Finite element (FE) model: (

**a**) Multi-cavity steel tube component; (

**b**) Concrete component; (

**c**) End plate component; (

**d**) Entire FE model.

**Figure 11.**Deformation diagram of the finite element model. (

**a**) Front view in the transverse direction, (

**b**) back view in the transverse direction, (

**c**) front view in the longitudinal direction, and (

**d**) back view in the longitudinal direction.

No. | Specimen Number | Cavity Thickness | Nominal Thickness | Total Number of Cavities | Specimen Height | Nominal Steel Content (%) |
---|---|---|---|---|---|---|

t_{w} (mm) | t (mm) | |||||

1 | TA4-600 | 50 | 2 | 4 | 600 | 13.40 |

2 | TA5-600 | 50 | 2 | 5 | 600 | 13.10 |

3 | TA6-600 | 50 | 2 | 6 | 600 | 13.04 |

Loading Age | Concrete Strength | Elasticity Modulus | Poisson’s Ratio | |
---|---|---|---|---|

(Days) | f_{cu} (MPa) | f_{c} (MPa) | E_{c} (×10^{5} MPa) | μ_{c} |

28 | 55.580 | 38.170 | 0.276 | 0.220 |

Measured Thickness | Tensile Strength | Yield Strength | Elasticity Modulus | Poisson’s Ratio | Elongation |
---|---|---|---|---|---|

T (mm) | f_{u} (MPa) | f_{y} (MPa) | E_{s} (×10^{5} MPa) | μ_{s} | ${\mathit{\delta}}_{\mathbf{s}}$ |

1.72 | 416.70 | 298.42 | 2.07 | 0.29 | 0.35 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sun, H.; Xu, Q.; Yan, P.; Yin, J.; Lou, P.
A Study on Axial Compression Performance of Concrete-Filled Steel-Tubular Shear Wall with a Multi-Cavity T-Shaped Cross-Section. *Energies* **2020**, *13*, 4831.
https://doi.org/10.3390/en13184831

**AMA Style**

Sun H, Xu Q, Yan P, Yin J, Lou P.
A Study on Axial Compression Performance of Concrete-Filled Steel-Tubular Shear Wall with a Multi-Cavity T-Shaped Cross-Section. *Energies*. 2020; 13(18):4831.
https://doi.org/10.3390/en13184831

**Chicago/Turabian Style**

Sun, Hao, Qingyuan Xu, Pengfei Yan, Jianguang Yin, and Ping Lou.
2020. "A Study on Axial Compression Performance of Concrete-Filled Steel-Tubular Shear Wall with a Multi-Cavity T-Shaped Cross-Section" *Energies* 13, no. 18: 4831.
https://doi.org/10.3390/en13184831