Heterogeneity of Electricity Consumption Patterns in Vulnerable Households
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
4.1. Summary
4.2. Limitation and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Chicco, G.; Ionel, O.M.; Porumb, R. Formation of load pattern clusters exploiting ant colony clustering principles. IEEE EuroCon 2013, 1460–1467. [Google Scholar] [CrossRef]
- Pina, A.; Silva, C.; Ferrão, P. The impact of demand side management strategies in the penetration of renewable electricity. Energy 2012, 41, 128–137. [Google Scholar] [CrossRef]
- Hsiao, Y.H. Household electricity demand forecast based on context information and user daily schedule analysis from meter data. IEEE Trans. Ind. Inform. 2015, 11, 33–43. [Google Scholar] [CrossRef]
- Haben, S.; Singleton, C.; Grindrod, P. Analysis and clustering of residential customers energy behavioral demand using smart meter data. IEEE Trans. Smart Grid 2016, 7, 136–144. [Google Scholar] [CrossRef]
- Satre-Meloy, A.; Diakonova, M.; Grünewald, P. Cluster analysis and prediction of residential peak demand profiles using occupant activity data. Appl. Energy 2020, 260, 114246. [Google Scholar] [CrossRef]
- Chicco, G.; Napoli, R.; Piglione, F. Comparisons among clustering techniques for Electricity Customer Classification. IEEE Trans. Power Syst. 2006, 21, 933–940. [Google Scholar] [CrossRef]
- Kwac, J.; Member, S.; Flora, J.; Rajagopal, R. Household energy consumption segmentation using hourly data. IEEE Trans. Smart Grid 2014, 5, 420–430. [Google Scholar] [CrossRef]
- McLoughlin, F.; Duffy, A.; Conlon, M. A clustering approach to domestic electricity load profile characterisation using smart metering data. Appl. Energy 2015, 141, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Viegas, J.L.; Vieira, S.M.; Melício, R.; Mendes, V.M.F.; Sousa, J.M.C. Classification of new electricity customers based on surveys and smart metering data. Energy 2016, 107, 804–817. [Google Scholar] [CrossRef]
- Hayn, M.; Bertsch, V.; Fichtner, W. Electricity load profiles in Europe: The importance of household segmentation. Energy Res. Soc. Sci. 2014, 3, 30–45. [Google Scholar] [CrossRef]
- Jones, R.V.; Fuertes, A.; Lomas, K.J. The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings. Renew. Sustain. Energy Rev. 2015, 43, 901–917. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.; Lin, S.; Newing, A.; Bahaj, A.B.; James, P. Electricity consumption and household characteristics: Implications for census-taking in a smart metered future. Comput. Environ. Urban Syst. 2017, 63, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Zethmayr, J.; Makhija, R.S. Six unique load shapes: A segmentation analysis of Illinois residential electricity consumers. Electr. J. 2019, 32, 106643. [Google Scholar] [CrossRef]
- Rhodes, J.D.; Cole, W.J.; Upshaw, C.R.; Edgar, T.F.; Webber, M.E. Clustering analysis of residential electricity demand profiles. Appl. Energy 2014, 135, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Trotta, G. An empirical analysis of domestic electricity load profiles: Who consumes how much and when? Appl. Energy 2020, 275, 115399. [Google Scholar] [CrossRef]
- Torriti, J.; Hanna, R.; Anderson, B.; Yeboah, G.; Druckman, A. Peak residential electricity demand and social practices: Deriving flexibility and greenhouse gas intensities from time use and locational data. Indoor Built Environ. 2015, 24, 891–912. [Google Scholar] [CrossRef]
- Stankovic, L.; Stankovic, V.; Liao, J.; Wilson, C. Measuring the energy intensity of domestic activities from smart meter data. Appl. Energy 2016, 183, 1565–1580. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.; Torriti, J. Explaining shifts in UK electricity demand using time use data from 1974 to 2014. Energy Policy 2018, 123, 544–557. [Google Scholar] [CrossRef]
- Grunewald, P.; Diakonova, M. The electricity footprint of household activities–implications for demand models. Energy Build. 2018, 174, 635–641. [Google Scholar] [CrossRef]
- McKenna, E.; Higginson, S.; Hargreaves, T.; Chilvers, J.; Thomson, M. When activities connect: Sequencing, network analysis, and energy demand modelling in the United Kingdom. Energy Res. Soc. Sci. 2020, 69, 101572. [Google Scholar] [CrossRef]
- Satre-Meloy, A.; Diakonova, M.; Grünewald, P. Daily life and demand: An analysis of intra-day variations in residential electricity consumption with time-use data. Energy Effic. 2020, 13, 433–458. [Google Scholar] [CrossRef] [Green Version]
- Gram-Hanssen, K. New needs for better understanding of household’s energy consumption–behaviour, lifestyle or practices? Archit. Eng. Des. Manag. 2014, 10, 91–107. [Google Scholar] [CrossRef]
- Shove, E.; Walker, G. What is energy for? Social practice and energy demand. Theory Cult. Soc. 2014, 31, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Warde, A. Consumption and theories of practice. J. Consum. Cult. 2005, 5, 131–153. [Google Scholar] [CrossRef]
- Southerton, D. Habits, routines and temporalities of consumption: From individual behaviours to the reproduction of everyday practices. Time Soc. 2013, 22, 335–355. [Google Scholar] [CrossRef]
- Friis, F.; Haunstrup Christensen, T. The challenge of time shifting energy demand practices: Insights from Denmark. Energy Res. Soc. Sci. 2016, 19, 124–133. [Google Scholar] [CrossRef]
- Gram-Hanssen, K. Understanding change and continuity in residential energy consumption. J. Consum. Cult. 2011, 11, 61–78. [Google Scholar] [CrossRef]
- Report, P. INSIGHT_E_Energy Poverty-Main Report. Available online: https://www.insightenergy.org (accessed on 15 April 2020).
- Legendre, B.; Ricci, O. Measuring fuel poverty in France: Which households are the most fuel vulnerable? Energy Econ. 2014, 49, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Llera-Sastresa, E.; Scarpellini, S.; Rivera-Torres, P.; Aranda, J.; Zabalza-Bribián, I.; Aranda-Usón, A. Energy vulnerability composite index in social housing, from a household energy poverty perspective. Sustainability 2017, 9, 691. [Google Scholar] [CrossRef] [Green Version]
- White, L.V.; Sintov, N.D. Health and financial impacts of demand-side response measures differ across sociodemographic groups. Nat. Energy 2020, 5, 50–60. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Petrova, S. A global perspective on domestic energy deprivation: Overcoming the energy poverty-fuel poverty binary. Energy Res. Soc. Sci. 2015, 10, 31–40. [Google Scholar] [CrossRef]
- González-Eguino, M. Energy poverty: An overview. Renew. Sustain. Energy Rev. 2015, 47, 377–385. [Google Scholar] [CrossRef]
- Petrova, S.; Gentile, M.; Bouzarovski, S.; Mäkinen, I.H. Perceptions of thermal comfort and housing quality:Exploring the microgeographies of energy poverty in Stakhanov, Ukraine. Environ. Plan. A 2013, 45, 1240–1257. [Google Scholar] [CrossRef]
- Barrella, R.; Priego, I.; Linares, J.I.; Arenas, E.; Romero, J.C.; Centeno, E. Feasibility study of a centralised electrically driven air source heat pump water heater to face energy poverty in block dwellings in Madrid. Energies 2020, 13, 2723. [Google Scholar] [CrossRef]
- Fell, M.J. Just flexibility? Nat. Energy 2020, 5, 6–7. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Herrero, S.T.; Petrova, S.; Frankowski, J.; Matoušek, R.; Maltby, T. Multiple transformations: Theorizing energy vulnerability as a socio-spatial phenomenon. Geogr. Ann. Ser. B Hum. Geogr. 2017, 99, 20–41. [Google Scholar] [CrossRef] [Green Version]
- Bartiaux, F.; Maretti, M.; Cartone, A.; Biermann, P.; Krasteva, V. Sustainable energy transitions and social inequalities in energy access: A relational comparison of capabilities in three European countries. Glob. Transit. 2019, 1, 226–240. [Google Scholar] [CrossRef]
- Longo, D.; Olivieri, G.; Roversi, R.; Turci, G.; Turillazzi, B. Energy poverty and protection of vulnerable consumers overview of the EU funding programs FP7 and H2020 and future trends in horizon Europe. Energies 2020, 13, 1030. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics (accessed on 7 January 2020).
- Danish Utility Regulator National Report Denmark Status for 2017. Available online: https://forsyningstilsynet.dk/media/1217/h-2017-national-report.pdf (accessed on 25 January 2020).
- Burger, S.; Schneider, I.; Botterud, A.; Pérez-Arriaga, I. Fair, Equitable, and Efficient Tariffs in the Presence of Distributed Energy Resources; Academic Press: Cambridge, MA, USA, 2019; pp. 155–188. [Google Scholar] [CrossRef]
- European Parliament; Council of the EU. Directive (EU) 2019/944 on Common Rules for the Internal Market for Electricity and Amending Directive 2012/27/EU. Available online: https://eur-lex.europa.eu/eli/dir/2019/944/oj (accessed on 23 January 2020).
- Denmark, S.; Number, P.I.; Census, H.; Henle, T.; Matthews, G.J.; Harel, O. The danish system for access to micro data. Health Serv. Res. 2012, 1–15. [Google Scholar] [CrossRef]
- Henle, T.; Matthews, G.J.; Harel, O. Data confidentiality. In Methods in Health Services Research; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–15. [Google Scholar] [CrossRef]
- Mashhoodi, B.; Stead, D.; Van Timmeren, A. Spatial homogeneity and heterogeneity of energy poverty: A neglected dimension. Ann. GIS 2019, 25, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Lee, E.; Kim, J.; Jang, D. Load profile segmentation for effective residential demand response program: Method and evidence from Korean pilot study. Energies 2020, 16, 1348. [Google Scholar] [CrossRef] [Green Version]
- Cembranel, S.S.; Lezama, F.; Soares, J.; Ramos, S.; Gomes, A.; Vale, Z. A short review on data mining techniques for electricity customers characterization. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia) 2019, Bangkok, Thailand, 20–23 March 2019; pp. 194–199. [Google Scholar] [CrossRef]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Xu, G.; Zong, Y.; Yang, Z. Applied Data Mining; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Piao, M.; Shon, H.S.; Lee, J.Y.; Ryu, K.H. Subspace projection method based clustering analysis in load profiling. IEEE Trans. Power Syst. 2014, 29, 1–8. [Google Scholar] [CrossRef]
- Tureczek, A.M.; Nielsen, P.S.; Madsen, H.; Brun, A. Clustering district heat exchange stations using smart meter consumption data. Energy Build. 2019, 182, 144–158. [Google Scholar] [CrossRef]
- Makles, A. Stata tip 110: How to get the optimal k-means cluster solution. Stata J. 2012, 12, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Gram-Hanssen, K. Residential heat comfort practices: Understanding users. Build. Res. Inf. 2010, 38, 175–186. [Google Scholar] [CrossRef]
- Halkier, B.; Jensen, I. Doing “healthier” food in everyday life? A qualitative study of how Pakistani Danes handle nutritional communication. Crit. Public Health 2011, 21, 471–483. [Google Scholar] [CrossRef]
- Hansen, A.R. The social structure of heat consumption in Denmark: New interpretations from quantitative analysis. Energy Res. Soc. Sci. 2016, 11, 109–118. [Google Scholar] [CrossRef]
- Hansen, A.R. ‘Sticky’ energy practices: The impact of childhood and early adulthood experience on later energy consumption practices. Energy Res. Soc. Sci. 2018, 46, 125–139. [Google Scholar] [CrossRef]
- Flath, C.; Nicolay, D.; Conte, T.; Van Dinther, C.; Filipova-Neumann, L. Cluster analysis of smart metering data: An implementation in practice. Bus. Inf. Syst. Eng. 2012, 4, 31–39. [Google Scholar] [CrossRef]
- Torriti, J. Understanding the timing of energy demand through time use data: Time of the day dependence of social practices. Energy Res. Soc. Sci. 2017, 25, 37–47. [Google Scholar] [CrossRef]
- Richardson, I.; Thomson, M.; Infield, D.; Delahunty, A. Domestic lighting: A high-resolution energy demand model. Energy Build. 2009, 41, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Halkier, B.; Katz-Gerro, T.; Martens, L. Applying practice theory to the study of consumption: Theoretical and methodological considerations. J. Consum. Cult. 2011, 11, 3–13. [Google Scholar] [CrossRef]
- Powells, G.; Fell, M.J. Flexibility capital and flexibility justice in smart energy systems. Energy Res. Soc. Sci. 2019, 54, 56–59. [Google Scholar] [CrossRef] [Green Version]
- The Commission for Energy Regulation. Electricity Smart Metering Customer Behaviour Trials (CBT) Findings Report. Available online: https://www.cru.ie/wp-content/uploads/2011/07/cer11080ai.pdf (accessed on 17 March 2020).
- Faruqui, A.; Sergici, S.; Akaba, L. The impact of dynamic pricing on residential and small commercial and industrial usage: New experimental evidence from Connecticut. Energy J. 2014, 35, 137–160. [Google Scholar] [CrossRef]
- Faruqui, A.; Sergici, S.; Akaba, L. Dynamic pricing of electricity for residential customers: The evidence from Michigan. Energy Effic. 2013, 6, 571–584. [Google Scholar] [CrossRef]
- Cappers, P.; Spurlock, C.A.; Todd, A.; Jin, L. Are vulnerable customers any different than their peers when exposed to critical peak pricing: Evidence from the U.S. Energy Policy 2018, 123, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, L.; Strengers, Y. Peak demand and the “family peak” period in Australia: Understanding practice (in) flexibility in households with children. Energy Res. Soc. Sci. 2015, 9, 116–124. [Google Scholar] [CrossRef]
- Faruqui, A.; Sergici, S.; Palmer, J. The impact of dynamic pricing on low income consumers: Evaluation of the IEE low income whitepaper. Rep. Md. Off. People’s Couns. 2010, 20–21. Available online: https://erranet.org/download/impact-dynamic-pricing-low-income-customers/# (accessed on 20 March 2020).
- Simshauser, P.; Downer, D. On the inequity of flat-rate electricity tariffs. Energy J. 2016, 37, 199–229. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Colson, G.; Wetzstein, M.E. Risk preference and adverse selection for participation in time-of-use electricity pricing programs. Resour. Energy Econ. 2017, 47, 126–142. [Google Scholar] [CrossRef] [Green Version]
- Faruqui, A.; Hledik, R.; Palmer, J. Time-varying and dynamic rate design. Glob. Power Best Pract. Ser. 2012, 1–52. Available online: https://www.raponline.org/wp-content/uploads/2016/05/rap-faruquihledikpalmer-timevaryingdynamicratedesign-2012-jul-23.pdf (accessed on 15 February 2020).
- Hobman, E.V.; Frederiks, E.R.; Stenner, K.; Meikle, S. Uptake and usage of cost-reflective electricity pricing: Insights from psychology and behavioural economics. Renew. Sustain. Energy Rev. 2016, 57, 455–467. [Google Scholar] [CrossRef] [Green Version]
- Jessoe, K.; Rapson, D. Knowledge is (less) power: Experimental evidence from residential energy use. Am. Econ. Rev. 2014, 104, 1417–1438. [Google Scholar] [CrossRef] [Green Version]
- Alberini, A.; Khymych, O.; Šcasný, M. Response to extreme energy price changes: Evidence from Ukraine. Energy J. 2019, 40, 189–212. [Google Scholar] [CrossRef] [Green Version]
- Prest, B.C. Peaking interest: How awareness drives the effectiveness of time-of-use electricity pricing. J. Assoc. Environ. Resour. Econ. 2020, 7, 103–143. [Google Scholar] [CrossRef]
- Trotta, G. Electricity awareness and consumer demand for information. Int. J. Consum. Stud. 2020. [Google Scholar] [CrossRef]
- Nicolson, M.L. Using Behavioural Science to Increase Consumer Adoption of Time-of-Use Electricity Tariffs: Evidence from Survey and Field Experiments. 2018. Available online: https://discovery.ucl.ac.uk/id/eprint/10044460/ (accessed on 27 July 2020).
- Stella, H.; Phil, S. Moving forward with actin. Science 2004, 305, 1673n. [Google Scholar] [CrossRef]
- Hledik, R.; Gorman, W.; Fell, M.; Nicolson, M.; Huebner, G. The value of TOU tariffs in Great Britain: Insights for decision-makers. Citiz. Advice Final Rep. 2017, 1, 1–63. [Google Scholar]
- Lessem, N.; Faruqui, A.; Sergici, S.; Mountain, D. The impact of time-of-use rates in Ontario. Public Util. Fortn. 2017, 7. Available online: http://files.brattle.com/files/7305_the_impact_of_time_of_use_rates_in_ontario.pdf (accessed on 9 June 2020).
- Hansen, A.R. Heating homes: Understanding the impact of prices. Energy Policy 2018, 121, 138–151. [Google Scholar] [CrossRef]
- Pallesen, T.; Jenle, R.P. Organizing consumers for a decarbonized electricity system: Calculative agencies and user scripts in a Danish demonstration project. Energy Res. Soc. Sci. 2018, 38, 102–109. [Google Scholar] [CrossRef]
- Strengers, Y. Prices as instruments of demand management: Interpreting the signals. In Infrastructures in Practice: The Dynamics of Demand in Networked Societies; Taylor & Francis: Abingdon, UK, 2019; pp. 184–196. [Google Scholar]
- Christensen, T.H.; Friis, F.; Bettin, S.; Throndsen, W.; Ornetzeder, M.; Skjølsvold, T.M.; Ryghaug, M. The role of competences, engagement, and devices in configuring the impact of prices in energy demand response: Findings from three smart energy pilots with households. Energy Policy 2020, 137. [Google Scholar] [CrossRef]
- Gram-Hanssen, K.; Christensen, T.H.; Madsen, L.V.; Do Carmo, C. Sequence of practices in personal and societal rhythms—Showering as a case. Time Soc. 2020, 29, 256–281. [Google Scholar] [CrossRef]
- Gram-Hanssen, K.; Hansen, A.R.; Mechlenborg, M. Danish PV prosumers’ time-shifting of energy-consuming everyday practices. Sustainability 2020, 12, 4121. [Google Scholar] [CrossRef]
- Katz, J.; Kitzing, L.; Schröder, S.T.; Andersen, F.M.; Morthorst, P.E.; Stryg, M. Household electricity consumers’ incentive to choose dynamic pricing under different taxation schemes. Wiley Interdiscip. Rev. Energy Environ. 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Insight New Ambitious Danish Energy Agreement Secured. Available online: https://investindk.com/insights/new-ambitious-danish-energy-agreement (accessed on 27 May 2020).
- Halkier, B. Easy eating? Negotiating convenience food in media food practices. Mak. Sense Consum. 2013, 119–136. Available online: https://forskning.ruc.dk/files/64476845/gupea_2077_34508_3.pdf#page=120 (accessed on 1 June 2020).
- Faruqui, A.; Sergici, S. Arcturus: International evidence on dynamic pricing. Electr. J. 2013, 26, 55–65. [Google Scholar] [CrossRef]
- Faruqui, A.; Bourbonnais, C. The tariffs of tomorrow. IEEE Power Energy Mag. 2020, 18, 18–25. [Google Scholar] [CrossRef]
- Shipworth, M.; Firth, S.K.; Gentry, M.I.; Wright, A.J.; Shipworth, D.T.; Lomas, K.J. Central heating thermostat settings and timing: Building demographics. Build. Res. Inf. 2010, 38, 50–69. [Google Scholar] [CrossRef] [Green Version]
- IEA. Energy Policies of IEA countries—Denmark 2011; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Centre for Energy Efficiency Denmark’s National Energy Efficiency Action Plan (NEEAP). Available online: https://ec.europa.eu/energy/sites/ener/files/dk_neeap_2017_en.pdf (accessed on 26 February 2020).
- Trotta, G.; Spangenberg, J.; Lorek, S. Energy efficiency in the residential sector: Identification of promising policy instruments and private initiatives among selected European countries. Energy Effic. 2018, 11. [Google Scholar] [CrossRef]
- Alberini, A.; Bigano, A.; Boeri, M. Looking for free riding: Energy efficiency incentives and Italian homeowners. Energy Effic. 2014, 7, 571–590. [Google Scholar] [CrossRef] [Green Version]
- Trotta, G. The determinants of energy efficient retrofit investments in the English residential sector. Energy Policy 2018, 120. [Google Scholar] [CrossRef]
- Poortinga, W.; Jiang, S.; Grey, C.; Tweed, C. Impacts of energy-efficiency investments on internal conditions in low-income households. Build. Res. Inf. 2018, 46, 653–667. [Google Scholar] [CrossRef]
- Trotta, G. Factors affecting energy-saving behaviours and energy efficiency investments in British households. Energy Policy 2018, 114. [Google Scholar] [CrossRef]
- Best, R.; Burke, P.J. Factors Contributing to energy-related financial stress in Australia. Econ. Rec. 2019, 95, 462–479. [Google Scholar] [CrossRef] [Green Version]
- Longhurst, N.; Hargreaves, T. Emotions and fuel poverty: The lived experience of social housing tenants in the United Kingdom. Energy Res. Soc. Sci. 2019, 56, 101207. [Google Scholar] [CrossRef]
Variables | Sample | Hourly Electricity Consumption (kWh) | Daily Electricity Consumption (kWh) | |||
---|---|---|---|---|---|---|
N | Mean | Std Dev | Min | Max | Mean | |
Full sample * | 15,488 | 0.362 | 0.457 | 0 | 3.11 | 8.6 |
Single-person households | 6345 (41%) | 0.253 | 0.355 | 0 | 3.11 | 6.12 |
Single-person households; over 65 years old | 2680 (17.3%) | 0.251 | 0.343 | 0 | 3.11 | 6.06 |
Single-person households; over 65 years old; lowest income quintile | 1297 (8.37%) | 0.239 | 0.338 | 0 | 3.11 | 5.76 |
Single-person households; over 65 years old; lowest income quintile; outside the workforce | 1287 (8.3%) | 0.238 | 0.337 | 0 | 3.11 | 5.74 |
Single-person households; over 65 years old; lowest income quintile; outside the workforce; single-family detached house | 372 (2.4%) | 0.364 | 0.443 | 0 | 3.11 | 8.79 |
Single-person households; over 65 years old; lowest income quintile; outside the workforce; single-family detached house; built before 1972 | 293 (1.89%) | 0.351 | 0.424 | 0 | 3.11 | 8.47 |
Single-person households; over 65 years old; lowest income quintile; outside the workforce; single-family detached house; built before 1972; floor area between 100 and 200 m2 | 196 (1.27%) | 0.333 | 0.4 | 0 | 3.11 | 8.05 |
Single-person households; over 65 years old; lowest income quintile; outside the workforce; single-family detached house; built before 1972; floor area between 100 and 200 m2; owned dwelling | 156 (1%) | 0.334 | 0.407 | 0 | 3.11 | 8.07 |
Single-person households; over 65 years old; lowest income quintile; outside the workforce; single-family detached house; built before 1972; floor area between 100 and 200 m2; owned dwelling; heating system powered by other sources than electricity | 137 (0.88%) | 0.278 | 0.299 | 0 | 3.11 | 6.7 |
Final sample: Single-person households; over 65 years old; lowest income quintile; outside the workforce; single-family detached house; built before 1972; floor area between 100 and 200 m2; owned dwelling; heating system powered by other sources than electricity; Region of Southern Denmark | 67 (0.43%) | 0.279 | 0.27 | 0 | 3.11 | 6.7 |
Cluster (K) | Average Base Consumption (kWh) | Average Consumption (kWh) | Average Peak Consumption (kWh) |
---|---|---|---|
1 | 0.1 | 0.17 | 0.28 |
2 | 0.18 | 0.29 | 0.46 |
3 | 0.26 | 0.36 | 0.48 |
4 | 0.34 | 0.51 | 0.8 |
Cluster (K) | Winter (Weekdays) | Winter (Weekends) | Spring (Weekdays) | Spring (Weekends) | Summer (Weekdays) | Summer (Weekends) | Autumn (Weekdays) | Autumn (Weekends) |
---|---|---|---|---|---|---|---|---|
1 | 4.6 | 4.67 | 3.99 | 4.1 | 3.84 | 3.81 | 4.32 | 4.28 |
2 | 7.66 | 7.79 | 6.65 | 6.66 | 5.79 | 5.7 | 7.25 | 7.29 |
3 | 10.4 | 10.68 | 7.88 | 8.01 | 7.31 | 7.13 | 8.7 | 8.88 |
4 | 16.48 | 16.88 | 11.17 | 11.52 | 9.35 | 9.34 | 11.32 | 11.88 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trotta, G.; Gram-Hanssen, K.; Lykke Jørgensen, P. Heterogeneity of Electricity Consumption Patterns in Vulnerable Households. Energies 2020, 13, 4713. https://doi.org/10.3390/en13184713
Trotta G, Gram-Hanssen K, Lykke Jørgensen P. Heterogeneity of Electricity Consumption Patterns in Vulnerable Households. Energies. 2020; 13(18):4713. https://doi.org/10.3390/en13184713
Chicago/Turabian StyleTrotta, Gianluca, Kirsten Gram-Hanssen, and Pernille Lykke Jørgensen. 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households" Energies 13, no. 18: 4713. https://doi.org/10.3390/en13184713
APA StyleTrotta, G., Gram-Hanssen, K., & Lykke Jørgensen, P. (2020). Heterogeneity of Electricity Consumption Patterns in Vulnerable Households. Energies, 13(18), 4713. https://doi.org/10.3390/en13184713