Defrosting Performance Improvement of Air-Source Heat Pump Combined Refrigerant Direct-Condensation Radiant Floor Heating System with Phase Change Material
Abstract
:1. Introduction
2. Experimental Investigation
2.1. Thermal Performance of Energy Storage Material
2.2. Experimental Setup of the Proposed System
2.2.1. Experimental Platform of the Proposed System
2.2.2. Measuring Instruments
2.2.3. Experimental Procedures
2.2.4. Data Reductions and Uncertainty Analysis
3. Results and Discussion
3.1. Mass Ratio and Thermal Properties of LA-TH-HD Ternary Eutectic Mixture
3.2. The Optimum Mass Ratio of LA-TD-HD to EG
3.3. Heat Storage and Release Performance of LA-TD-HD and Its CPCM
3.4. Thermal Performance of the Experimental System in Heating Condition
3.5. Thermal Performance of the Experimental System in Defrosting Condition
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A | surface area, m2 |
Gr | Grashof number |
Hj | latent heat of the jth component, kJ kg−1 |
hc | convective heat transfer coefficient, W m−2 K−1 |
hr | radiant heat transfer coefficient, W m−2 K−1 |
l | characteristic length, m |
Mj | molar fraction of the jth component |
mCPCM | mass fractions of LA-TD-HD/EG CPCM |
mPCM | mass fractions of LA-TD-HD PCM |
Nu | Nusselt number |
Q | heating capacity, W |
Ql | latent heating capacity, W |
Qs | sensible heating capacity, W |
q | heat flux, W m−2 |
Pr | Prandtl number |
Ra | Rayleigh number |
Tm | phase change temperature of the eutectic mixture, °C |
Tj | phase change temperature of the jth Component, °C |
ta | indoor air temperature, °C |
tf | radiant floor surface temperature, °C |
tw | unheated wall surface temperature, °C |
Xi | primary parameter |
δXi | uncertainty of Xi |
Y | derived quantity |
δY | uncertainty of Y |
ΔHCPCM | latent heats of LA-TD-HD/EG CPCM |
ΔHPCM | latent heats of LA-TD-HD PCM |
Greek Symbols | |
υ | kinematic viscosity, m2 s−1 |
λ | thermal conductivity, W m-1 K−1 |
a | thermal diffusivity, m2 s−1 |
β | coefficient of volumetric expansion, K−1 |
ε | emissivity of the radiant floor surface |
σ | Stefan-Boltzmann constant, 5.67 × 10−8 W m−2 K−4 |
Abbreviations | |
ASHP | air-source heat pump |
CPCM | composite phase change material |
PCM | phase change material |
DSC | differential scanning calorimetry |
EG | expanded graphite |
HD | hexadecanol |
LA | dodecanoic acid |
TD | tetradecanol |
Subscripts | |
a | air |
c | connective |
f | floor surface |
m | eutectic mixture |
r | radiant |
w | unheated wall |
References
- Hu, W.; Jiang, Y.; Qu, M.; Ni, L.; Yao, Y.; Deng, S. An experimental study on the operating performance of a novel reverse-cycle hot gas defrosting method for air source heat pumps. Appl. Therm. Eng. 2011, 31, 363–369. [Google Scholar]
- Zheng, X.; Shi, R.; You, S.; Han, Y.; Shi, K. Experimental study of defrosting control method based on image processing technology for air source heat pumps. Sustain. Cities Soc. 2019, 51, 101667. [Google Scholar] [CrossRef]
- Dogru, M.; Nakamura, M.; Shimazaki, J.; Tsubota, K. Changing trends in the treatment of dry-eye disease. Expert Opin. Investig. Drug. 2013, 22, 1581–1601. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.H.; Sun, Y.Y.; Wang, W.; Ge, Y.J.; Li, L.; Liu, J.D. A novel temperature-humidity-time defrosting control method based on a frosting map for air-source heat pump. Int. J. Refrig. 2015, 54, 45–54. [Google Scholar] [CrossRef]
- Wang, Z.; Ning, H.; Ji, Y.; Hou, J.; He, Y. Human thermal physiological and psychological responses under different heating environments. J. Therm. Biol. 2015, 52, 177–186. [Google Scholar] [CrossRef]
- Zhou, G.; He, J. Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes. Appl. Energy 2015, 138, 648–660. [Google Scholar] [CrossRef]
- Maivel, M.; Kurnitski, J. Low temperature radiator heating distribution and emission efficiency in residential buildings. Energy Build. 2014, 69, 224–236. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, L.; Zheng, W.; You, S.; Jiang, T.; Shao, S.; Zhu, X. Experimental study on a novel thermal storage refrigerant-heated radiator coupled with air source heat pump heating system. Build Environ. 2019, 164, 106341. [Google Scholar] [CrossRef]
- Zhou, B.; Tan, H.W.; Wang, L. Application study on radiator heating system with air-source heat pump in Shanghai area. Heat. Vent. Air Cond. 2013, 43, 83–87. (In Chinese) [Google Scholar]
- Dong, J.K.; Zhang, L.; Deng, S.M.; Yang, B.; Huang, S. An experimental study on a novel radiant-convective heating system based on air source heat pump. Energy Build. 2018, 158, 812–821. [Google Scholar] [CrossRef]
- Shao, S.; Zhang, H.; You, S.; Zheng, W.; Jiang, L. Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system. Appl. Energy 2019, 247, 78–88. [Google Scholar] [CrossRef]
- Sebarchievici, C.; Dan, D.; Sarbu, I. Performance Assessment of a Ground-coupled Heat Pump for an Office Room Heating using Radiator or Radiant Floor Heating Systems. Procedia Eng. 2015, 118, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H. Human Thermal Sensation and Comfort in Transient and Non-uniform Thermal Environments. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2003. [Google Scholar]
- Zeiler, W.; Boxem, G. Effects of thermal activated building systems in schools on thermal comfort in winter. Build. Environ. 2009, 44, 2308–2317. [Google Scholar] [CrossRef]
- Sattari, S.; Farhanieh, B. A parametric study on radiant floor heating system performance. Renew. Energy 2006, 31, 1617–1626. [Google Scholar] [CrossRef]
- Shin, M.S.; Rhee, K.N.; Ryu, S.R.; Yeo, M.S.; Kim, K.W. Design of radiant floor heating panel in view of floor surface temperatures. Build. Environ. 2015, 92, 559–577. [Google Scholar] [CrossRef]
- Li, Q.; Chen, C.; Zhang, Y.; Lin, J.; Ling, H.; Ma, Y. Analytical solution for heat transfer in a multilayer floor of a radiant floor system. Build. Simul. 2014, 7, 207–216. [Google Scholar] [CrossRef]
- Xu, D.; Qi, T.; Zhen, L. Energy and exergy analysis of solar integrated air source heat pump for radiant floor heating without water. Energy Build. 2017, 142, 128–138. [Google Scholar]
- Amer, M.; Wang, C.C. Review of defrosting methods. Renew. Sustain. Energy Rev. 2017, 73, 53–74. [Google Scholar] [CrossRef]
- Shen, J.; Qian, Z.; Xing, Z.; Yu, Y.; Ge, M. A review of the defrosting methods of air source heat pumps using heat exchanger with phase change material. Energy Procedia 2019, 160, 491–498. [Google Scholar] [CrossRef]
- Moreno, P.; Solé, C.; Castell, A.; Cabeza, L.F. The use of phase change materials in domestic heat pump and air-conditioning systems for short term storage: A review. Renew. Sustain. Energy Rev. 2014, 39, 1–13. [Google Scholar] [CrossRef]
- IEA. Heat Pump Centre Newsletter; IEA: Paris, France, 1990; Volume 8, p. 10. [Google Scholar]
- Chen, C.; Yang, J.; Wang, X. New method of heat compensation for defrosting of air source heat pump system in winter. J. Refrig. 2006, 27, 37–40. (In Chinese) [Google Scholar]
- Dong, J.; Jiang, Y.; Yao, Y. Experimental study on the characteristics of thermal energy storage for air-source heat pump defrosting using sub-cooling energy of refrigeration. Acta Energ. Sol. Sin 2012, 33, 1536–1540. (In Chinese) [Google Scholar]
- Zhang, L.; Dong, J.; Jiang, Y.; Yao, Y. A novel defrosting method using heat energy dissipated by the compressor of an air source heat pump. Appl. Energy 2014, 133, 101–111. [Google Scholar]
- Dong, J.; Li, S.; Yao, Y.; Jiang, Y.; Tian, Y.; Tian, H. Defrosting performances of a multi-split air source heat pump with phase change thermal storage. Int. J. Refrig. 2015, 55, 49–59. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, Y.; Wen, B. Experimental study on the performance of the ASHP with phase change thermal storage evaporator. Acta Energ. Sol. Sin. 2015, 36, 604–609. (In Chinese) [Google Scholar]
- Qu, M.; Li, T.; Deng, S. Improving defrosting performance of cascade air source heat pump using thermal energy storage based reverse cycle defrosting method. Appl. Therm. Eng. 2017, 121, 728–736. [Google Scholar] [CrossRef]
- Liu, Z.; Li, A.; Wang, Q. Experimental study on a new type of thermal storage defrosting system for frost-free household refrigerators. Appl. Therm. Eng. 2017, 118, 256–265. [Google Scholar] [CrossRef]
- Cabrol, L.; Rowley, P. Towards low carbon homes – a simulation analysis of building-integrated air-source heat pump systems. Energy Build. 2012, 48, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Mazo, J.; Delgado, M.; Marin, J.M.; Zalba, B. Modeling a radiant floor system with Phase Change Material (PCM) integrated into a building simulation tool: Analysis of a case study of a floor heating system coupled to a heat pump. Energy Build. 2012, 47, 458–466. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, X.S. Thermal analysis of a double layer phase change material floor. Appl. Therm. Eng. 2011, 31, 1576–1581. [Google Scholar] [CrossRef]
- Wang, E.; Kong, X.; Rong, X.; Yao, C.; Yang, H.; Qi, C. A Study on a Novel Phase Change Material Panel Based on Tetradecanol/Lauric Acid/Expanded Perlite/Aluminium Powder for Building Heat Storage. Materials 2016, 9, 896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Yuan, Y.; Wang, X.; Cao, X.; Yang, X.; Hu, S. Preparation and characterization of lauric–myristic–palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage. Chem. Eng. J. 2013, 231, 214–219. [Google Scholar] [CrossRef]
- Yang, X.; Yuan, Y.; Zhang, N.; Cao, X.; Liu, C. Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol. Energy 2014, 99, 259–266. [Google Scholar] [CrossRef]
- Zhao, C.; You, S.; Zhu, C.; Cabeza, L.F. Experimental investigation on the thermal performance of heat storage walls coupled with active solar systems. Heat Mass Transf. 2016, 52, 2747–2757. [Google Scholar] [CrossRef]
- JG/T 403, Test Methods of Thermal Performance of Radiant Cooling and Heating Unit; Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD): Beijing, China, 2013.
- Liu, M.; Zhang, H.; Zheng, W.; You, S. Heat Transfer Research of a New Type of Radiant Floor Heating System. Heat Transf. Eng. 2020, 41, 1626–1641. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, J.; Jiang, Y.; Deng, S.; Huang, S. An experimental study on frosting and defrosting performances of a novel air source heat pump unit with a radiant-convective heating terminal. Energy Build. 2018, 16, 10–21. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE Hand Book—Fundamentals; Chapter 4: Heat transfer; American Society of Heating Refrigeration and Air-conditioning Engineers: Atlanta, GA, USA, 2009. [Google Scholar]
- Bejan, A.; Kraus, A.D. Heat Transfer Handbook; John Wily & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Lewandowskia, W.M.; Lewandowska-Iwaniak, W. The external walls of a passive building: A classification and description of their thermal and optical properties. Energy Build. 2014, 69, 93–102. [Google Scholar] [CrossRef]
- Wu, Z.; You, S.; Zhang, H.; Zheng, W. Experimental investigation on heat transfer characteristics of staggered tube bundle heat exchanger immersed in oscillating flow. Int. J. Heat Mass Transf. 2020, 148, 119–125. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, Y.; Du, Y.; Cao, X.; Yuan, Y. Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage. Energy 2014, 78, 950–956. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, T. Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-stabilized phase change material for thermal energy storage. Energy Convers. Manag. 2015, 101, 164–171. [Google Scholar] [CrossRef]
- Fu, W.; Zou, T.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate–urea/expanded graphite for radiant floor heating system. Appl. Therm. Eng. 2018, 138, 618–626. [Google Scholar] [CrossRef]
PCM | Latent Heat of Melting (J/g) | Melting Point (°C) | Mass Percentage (%) | |
---|---|---|---|---|
Measured Value | Predicted Value | |||
LA | 193.6 | 43.6 | – | 35.6 |
TD | 257 | 37.6 | – | 43.3 |
HD | 276 | 48.9 | – | 21.1 |
LA-TD-HD | 181.3 | 26.1 | 25.8 | 100 |
Mass fraction of EG (%) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Latent heat (J/g) | 181.3 | 179.5 | 177.7 | 175.9 | 174.0 | 172.2 | 170.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; You, S.; Zhang, H.; Liu, Z.; Zheng, W.; Wu, Z.; Fan, M. Defrosting Performance Improvement of Air-Source Heat Pump Combined Refrigerant Direct-Condensation Radiant Floor Heating System with Phase Change Material. Energies 2020, 13, 4594. https://doi.org/10.3390/en13184594
Zheng C, You S, Zhang H, Liu Z, Zheng W, Wu Z, Fan M. Defrosting Performance Improvement of Air-Source Heat Pump Combined Refrigerant Direct-Condensation Radiant Floor Heating System with Phase Change Material. Energies. 2020; 13(18):4594. https://doi.org/10.3390/en13184594
Chicago/Turabian StyleZheng, Chenxiao, Shijun You, Huan Zhang, Zeqin Liu, Wandong Zheng, Zhenjing Wu, and Man Fan. 2020. "Defrosting Performance Improvement of Air-Source Heat Pump Combined Refrigerant Direct-Condensation Radiant Floor Heating System with Phase Change Material" Energies 13, no. 18: 4594. https://doi.org/10.3390/en13184594
APA StyleZheng, C., You, S., Zhang, H., Liu, Z., Zheng, W., Wu, Z., & Fan, M. (2020). Defrosting Performance Improvement of Air-Source Heat Pump Combined Refrigerant Direct-Condensation Radiant Floor Heating System with Phase Change Material. Energies, 13(18), 4594. https://doi.org/10.3390/en13184594