Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience
Abstract
:1. Introduction
2. Usage of Energy Storage Systems and Sizing Methodology
- —specific cost of battery storage capacity
- —specific cost of related power unit
- —overhead cost factor for utility components
3. System Analyzed
3.1. System Configuration and Grid Integration
3.2. Supervision and Communication System
4. Controllability Developed
4.1. Study Case A
4.2. Study Case B
4.3. Night Supply
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
A-CAES | adiabatic compressed air energy storage |
BES | battery energy storage |
vector of length l and contains number of capacity values | |
vectors containing ones in every position with length according to number of capacitance and power values (i,l) to open up the matrix containing all combinations of PStor and CStor | |
HVAC | heating, ventilation, and air conditioning |
Li-ion | lithium battery |
NaS | sodium sulfur battery |
vector of length i and contains all determined power values | |
residual load power | |
P2G | power-to-gas |
PCu | curtailed power |
PSH | pumped storage hydropower |
PV | photovoltaic |
RES | renewable energy sources |
Rsave | yearly savings that can be evaluated for every power and capacity combination |
Pred | profits from the energy storage utilization |
SMES | superconducting magnetic energy storage |
SOC | state of charge |
TEES | thermoelectric energy storage |
UPS | uninterruptible power supply |
References
- Bundesnetzagentur (BnetzA). Monitoringbericht 2019; Bundesnetzagentur Für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen: Bonn, Germany, 2019. [Google Scholar]
- Bundesnetzagentur (BNetzA). Available online: https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Engpassmanagement/Redispatch/redispatch-node.htm (accessed on 18 May 2020).
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018L2001&from=EN (accessed on 23 April 2020).
- European Policies on Climate and Energy towards 2020, 2030 and 2050. Available online: https://www.europarl.europa.eu/thinktank/en/document.html?reference=IPOL_BRI(2019)631047 (accessed on 23 April 2020).
- Hauer, I.; Styczynski, Z.A.; Komarnicki, P.; Stotzer, M.; Stein, J. Smart grid in critical situations. Do we need some standards for this? A German perspective. In Proceedings of the IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar]
- Parol, M.; Wójtowicz, T.; Księżyk, K.; Wenge, C.; Balischewski, S.; Arendarski, B. Optimum management of power and energy in low voltage microgrids using evolutionary algorithms and energy storage. Int. J. Electr. Power Energy Syst. 2020, 119, 105886. [Google Scholar] [CrossRef]
- Alemany, J.; Magnago, F.; Lombardi, P.A.; Arendarski, B.; Komarnicki, P. Multiobjective Optimization Model for Wind Power Allocation. Math. Probl. Eng. 2017, 2017, 1–10. [Google Scholar] [CrossRef]
- Wilcox, T.; Jin, N.; Flach, P.; Thumim, J. A Big Data platform for smart meter data analytics. Comput. Ind. 2019, 105, 250–259. [Google Scholar] [CrossRef]
- Stotzer, M.; Styczynski, Z.A.; Hansch, K.; Naumann, A.; Komarnicki, P. Concept and potential of electric vehicle fleet management for ancillary service provision. In Proceedings of the IEEE Grenoble PowerTech 2013, Grenoble, France, 16–20 June 2013. [Google Scholar]
- Wenge, C.; Komarnicki, P.; Styczynski, Z.A. Models and boundaries of data exchange between electric-vehicle and charging-point. Example of a practical realisation. In Proceedings of the 2010 Modern Electric Power Systems, Wroclaw, Poland, 20–22 September 2010. [Google Scholar]
- Alemany, J.; Arendarski, B.; Lombardi, P.; Komarnicki, P. Accentuating the renewable energy exploitation: Evaluation of flexibility options. Int. J. Electr. Power Energy Syst. 2018, 102, 131–151. [Google Scholar] [CrossRef]
- Powalko, M.; Komarnicki, P.; Rudion, K.; Styczynski, Z.A. Enhancing virtual power plant observability with PMUs. In Proceedings of the 5th International Conference on Critical Infrastructure, Beijing, China, 20–22 September 2010. [Google Scholar]
- Balischewski, S.; Wenge, C.; Komarnicki, P.; Wolter, M. Optimized operation of energy storages for primary control reserve. In Proceedings of the Conference on Sustainable Energy Supply and Energy Storage Systems 2018, Hamburg, Germany, 20–21 September 2018. [Google Scholar]
- Komarnicki, P.; Styczynski, Z.A.; Arendarski, B.; Trojan, P.; Bielchev, I. Zasobniki Energii—Integracja i wpływ na Prowadzenie Sieci Dystrybucyjnej (Energy storage—Integration and Impact on the Operation of the Distribution Network), Blackout a Krajowy System Energetyczny; Safety of the Polish Power System: Poznan, Poland, 2014; pp. 237–250. ISBN 978-83-7712-100-9. [Google Scholar]
- Komarnicki, P.; Arendarski, B.; Ramczykowski, M. Scenariusze rozwoju technologii magazynowania energii. E-Mobilność: Wizje i Scenariusze Rozwoju; Gajewskiego, J., Paprockiego, W., Pieriegud., J., Eds.; Centrum Myśli Strategicznych: Sopot, Poland, 2017; pp. 120–145. ISBN 978-83-945091-2-5. [Google Scholar]
- Liu, J.; Li, J.; Xiang, Y.; Hu, S. Optimal Sizing of Hydro-PV-Pumped Storage Integrated Generation System Considering Uncertainty of PV, Load and Price. Energies 2019, 12, 3001. [Google Scholar] [CrossRef] [Green Version]
- Bueno, C.; Carta, J.A. Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands. Renew. Sustain. Energy Rev. 2006, 10, 312–340. [Google Scholar] [CrossRef]
- Henchoz, S.; Buchter, F.; Favrat, D.; Morandin, M.; Mercangöz, M. Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles. Energy 2012, 45, 358–365. [Google Scholar] [CrossRef]
- Brahman, F.; Honarmand, M.; Jadid, S. Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system. Energy Build. 2015, 90, 65–75. [Google Scholar] [CrossRef]
- Bruno, S.; Dicorato, M.; La Scala, M.; Sbrizzai, R.; Lombardi, P.A.; Arendarski, B. Optimal Sizing and Operation of Electric and Thermal Storage in a Net Zero Multi Energy System. Energies 2019, 12, 3389. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, P.A.; Röhrig, C.; Rudion, K.; Marquardt, R.; Estermann, A.S.; Styczynski, Z.A.; Voropai, N.I.; Müller-Mienack, M. An A-CAES pilot installation in the distribution system: A technical study for RES integration. Energy Sci. Eng. 2014, 2, 116–127. [Google Scholar] [CrossRef]
- Abbaspour, M.; Satkin, M.; Mohammadi-Ivatloo, B.; Hosseinzadehlotfi, F.; Noorollahi, Y. Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES). Renew. Energy 2013, 51, 53–59. [Google Scholar] [CrossRef]
- Tomczewski, A.; Kasprzyk, L. Optimisation of the Structure of a Wind Farm—Kinetic Energy Storage for Improving the Reliability of Electricity Supplies. Appl. Sci. 2018, 8, 1439. [Google Scholar] [CrossRef] [Green Version]
- Tomczewski, A.; Kasprzyk, L.; Nadolny, Z. Reduction of power production costs in a wind power plant – flywheel energy storage system arrangement. Energies 2019, 12, 1942. [Google Scholar] [CrossRef] [Green Version]
- Kalamaras, E.; Belekoukia, M.; Lin, Z.; Xu, B.; Wang, H.; Xuan, J. Techno-economic Assessment of a Hybrid Off-grid DC System for Combined Heat and Power Generation in Remote Islands. Energy Procedia 2019, 158, 6315–6320. [Google Scholar] [CrossRef]
- Zhang, Y.; Campana, P.E.; Lundblad, A.; Yan, J. Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation. Appl. Energy 2017, 201, 397–411. [Google Scholar] [CrossRef]
- Wang, F.-C.; Hsiao, Y.-S.; Yang, Y.-Z. The Optimization of Hybrid Power Systems with Renewable Energy and Hydrogen Generation. Energies 2018, 11, 1948. [Google Scholar] [CrossRef] [Green Version]
- Malkowski, R.; Jaskólski, M.; Pawlicki, W. Operation of the Hybrid Photovoltaic-Battery System on the Electricity Market—Simulation, Real-Time Tests and Cost Analysis. Energies 2020, 13, 1402. [Google Scholar] [CrossRef] [Green Version]
- Ranaweera, I.; Midtgard, O.M. Optimization of operational cost for a grid-supporting PV system withbattery storage. Renew. Energy 2016, 88, 262–272. [Google Scholar] [CrossRef]
- Hemmati, R.; Saboori, H. Stochastic optimal battery storage sizing and scheduling in home energy management systems equipped with solar photovoltaic panels. Energy Build. 2017, 152, 290–300. [Google Scholar] [CrossRef]
- Koller, M.; Borsche, T.; Ulbig, A.; Andersson, G. Review of grid applications with the Zurich 1MW battery energy storage system. Electr. Power Syst. Res. 2015, 120, 128–135. [Google Scholar] [CrossRef]
- Consiglio, L.; Di Lembo, G.; Noce, C.; Eckert, P.; Rasic, A.; Schuette, A. Performances of the first electric storage system of Enel Distribuzione. In Proceedings of the 22nd International Conference on Electricity Distribution, Stockholm, Sweden, 10–13 June 2013. [Google Scholar]
- Komarnicki, P. Energy storage systems: Power grid and energy market use cases. Arch. Electr. Eng. 2016, 65, 495–511. [Google Scholar] [CrossRef]
- Balischewski, S.; Hauer, I.; Wolter, M.; Wenge, C.; Lombardi, P.; Komarnicki, P. Battery storage services that minimize wind farm operating costs: A case study. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Torino, Italy, 26–29 September 2017. [Google Scholar]
- Jiang, X.; Nan, G.; Liu, H.; Guo, Z.; Zeng, Q.; Jin, Y. Optimization of Battery Energy Storage System Capacity for Wind Farm with Considering Auxiliary Services Compensation. Appl. Sci. 2018, 8, 1957. [Google Scholar] [CrossRef] [Green Version]
- Pham, C.M.; Tran, Q.T.; Bacha, S.; Hably, A.; Nugoc, A.L. Optimal sizing of battery energy storage system for an island microgrid. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018. [Google Scholar]
- Sharma, S.; Bhattacharjee, S.; Bhattacharya, A. Grey wolf optimisation for optimal sizing of battery energy storage device to minimise operation cost of microgrid. IET Gener. Transm. Distrib. 2016, 10, 625–637. [Google Scholar] [CrossRef]
- Montoya, O.; Gil-González, W.; Trujillo, E.R. Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids. Energies 2020, 13, 2289. [Google Scholar] [CrossRef]
- Komarnicki, P.; Lombardi, P.; Styczynski, Z.A. Electric Energy Storage Systems: Flexibility Options for Smart Grids, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Stroe, D.-I.; Knap, V.; Swierczynski, M.; Stroe, A.-I.; Teodorescu, R. Operation of a Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation: A Battery Lifetime Perspective. IEEE Trans. Ind. Appl. 2017, 53, 430–438. [Google Scholar] [CrossRef]
- Stenzel, P.; Schreiber, A.; Marx, J.; Wulf, C.; Schreider, M.; Stephan, L. Renewable energies for Graciosa Island, Azores—Life cycle assessment of electricity generation. Energy Procedia 2017, 35, 62–74. [Google Scholar] [CrossRef]
- Jannesar, M.R.; Sedighi, A.; Savaghebi, M.; Guerrero, J.M. Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration. Appl. Energy 2018, 226, 957–966. [Google Scholar] [CrossRef] [Green Version]
- Opiyo, N. Energy storage systems for PV-based communal grids. J. Energy Storage 2016, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Klabunde, C.; Moskalenko, N.; Styczynski, A.Z.; Lombardi, P.; Komarnicki, P. Use of energy storage systems in low voltage networks with high photovoltaic system penetration. In Proceedings of the IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015. [Google Scholar]
- Hansch, K.; Naumann, A.; Wenge, C.; Wolf, M. Communication for battery energy storage systems compliant with IEC 61850. Int. J. Electr. Power Energy Syst. 2018, 103, 577–586. [Google Scholar] [CrossRef]
- Battke, B.; Schmidt, T.S.; Grosspietsch, D.; Hoffmann, V.H. A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications. Renew. Sustain. Energy Rev. 2013, 25, 240–250. [Google Scholar] [CrossRef]
- Lombardi, P.A.; Schwabe, F. Sharing economy as a new business model for energy storage systems. Appl. Energy 2017, 188, 485–496. [Google Scholar] [CrossRef]
- Lombardi, P.; Styczynski, A.Z. Electric energy storage systems: Review and modelling. In Proceedings of the CIGRE 2011 Bologna Symposium—The Electric Power System of the Future: Integrating Supergrids and Microgrids, Bologna, Italy, 13–15 September 2011. [Google Scholar]
- Lombardi, P.; Wenge, C.; Balischewski, S.; Komarnicki, P. Collected experiences from the Fraunhofer Institute IFFl’s Smart Grid Laboratory. In Proceedings of the AEIT International Annual Conference, Bari, Italy, 3–5 October 2018. [Google Scholar]
Voltage Level | Power/Energy | Storage Type | Utilization |
---|---|---|---|
Low voltage 0.4 kV | up to 100 kW up to 100 kWh | Battery (Pb, Li-ion) | UPS systems, island operation, energy efficiency improvement, regulation of RES sources |
Medium voltage 6, 10, 20 kV | up to 1 MW up to 1 MWh | Battery (Pb, Li-ion, NaS, Redox-Flow), flywheel | Voltage and frequency regulation, control of load changes, local cooperation with RES, UPS systems |
High voltage 110 kV | up to 100 MW up to 200 MWh | Battery (NaS, Redox-Flow), SMES, flywheel, A-CAES, P2G, TEES | Global cooperation with RES, voltage and frequency regulation, energy market balancing |
Extra high voltage 220, 400 kV | up to 1 GW up to 10 GWh | PSH, A-CAES, P2G, TEES | National and international integration of RES, energy market replication, system services |
Parameter | Value |
---|---|
Feed-in tariff in EUR/MWh | 161.50 |
Electricity costs in EUR/MWh | 162.53 |
Limit power (reduction) in MW | 40 |
Parameter | Value |
---|---|
Curtailment energy in MWh | 3598.4 |
Stored energy from curtailment in MWh | 76.87 |
Sum of the stored energy (from curtailment and PV recharge) in MWh | 163 |
Energy supply without battery in GWh | 56.311 |
Energy supply with battery in GWh | 56.178 |
PV park’s own consumption without battery in MWh | 331.56 |
PV park’s own consumption with battery in MWh | 215.90 |
Battery load coverage from PV generation in MWh | 28.20 |
Battery load coverage from battery in MWh | 31.43 |
Number of billing days | 167 |
Parameter | Value in € |
---|---|
Cost of load coverage without battery | 53.875 |
Cost of load coverage with battery | 35.092 |
Difference in costs | 18.782 |
Payment for energy supply without battery | 9,094,296 |
Payment for energy supply with battery | 9,072,844 |
Difference in payment | −21.451 |
Potential profit (positive)/loss (negative) | −2.668 |
Parameter | Value |
---|---|
Curtailment energy in MWh | 3.598 |
Stored regulated energy in MWh | 272.40 |
Energy supply without battery in GWh | 56.31 |
Energy supply with battery in GWh | 55.98 |
PV park’s own consumption without battery in MWh | 331.56 |
PV park’s own consumption with battery in MWh | 216.17 |
Battery load coverage from PV generation in MWh | 28.23 |
Battery load coverage from battery in MWh | 31.43 |
Number of billing days | 167 |
Parameter | Value in € |
---|---|
Cost of load coverage without battery | 53.875 |
Cost of load coverage with battery | 35.120 |
Difference in costs | 18.754 |
Payment for energy supply without battery | 9,094,296 |
Payment for energy supply with battery | 9,084,251 |
Difference in payment | −10.045 |
Potential profit (positive)/losses (negative) | 8.704 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wenge, C.; Pietracho, R.; Balischewski, S.; Arendarski, B.; Lombardi, P.; Komarnicki, P.; Kasprzyk, L. Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience. Energies 2020, 13, 4590. https://doi.org/10.3390/en13184590
Wenge C, Pietracho R, Balischewski S, Arendarski B, Lombardi P, Komarnicki P, Kasprzyk L. Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience. Energies. 2020; 13(18):4590. https://doi.org/10.3390/en13184590
Chicago/Turabian StyleWenge, Christoph, Robert Pietracho, Stephan Balischewski, Bartlomiej Arendarski, Pio Lombardi, Przemyslaw Komarnicki, and Leszek Kasprzyk. 2020. "Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience" Energies 13, no. 18: 4590. https://doi.org/10.3390/en13184590
APA StyleWenge, C., Pietracho, R., Balischewski, S., Arendarski, B., Lombardi, P., Komarnicki, P., & Kasprzyk, L. (2020). Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience. Energies, 13(18), 4590. https://doi.org/10.3390/en13184590