Classification of Coal Structure Combinations and Their Influence on Hydraulic Fracturing: A Case Study from the Qinshui Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Research Methods
3.1. Quantitative Characterisation of Coal Structure
3.2. Hydraulic Fracturing Effects
3.2.1. Prediction of the Original Permeability of a Coal Reservoir
3.2.2. Permeability Prediction Model for Coal Reservoirs Post Hydraulic Fracturing
4. Results and Discussion
4.1. Classification of Reservoir Types with Different Coal Structures
4.1.1. Identification of Different Coal Structures
4.1.2. Classification of Reservoir Type by Proportion and Combination of Different Coal Structures
4.2. Effects of Hydraulic Fracturing with Different Fracturing Curves
4.2.1. Classification of Hydraulic Fracturing Curves
4.2.2. Fracturing Effect of Hydraulic Fracturing Curves
4.3. Fracturing Effect of Reservoir Types with Different Coal Structure Combinations
5. Conclusions
- (1)
- The fracturing curves are mainly of the descending or stable types when the hard coal ratio is above 70%, and the fracturing effect is good. The fracturing curves are mainly of fluctuation, or rising types when the soft coal ratio is above 50%, which has a negative effect on the exploitation of coalbed methane.
- (2)
- For coal with different coal structure combinations, hard coal often cannot be easily transformed because of their different mechanical properties when conventional hydraulic fracturing technology is used to fracture the whole coal segment.
- (3)
- The hard coal is only fractured for the up-down coal reservoir. The intervening interval coal reservoir is used to perforate the middle hard coal by staged fracturing. The multi-layer superposition coal reservoir is reformed by top coal fracturing.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Roman Symbols | |
A | Area of fracturing cracks, m2 |
Q1 | Filtration loss of fracturing fluid during fracturing, m3 |
Q2 | Amount of fracturing fluid at the beginning of filtration after cessation of pumping, m3 |
Qt | Amount of fracturing fluid during fracturing, m3 |
k | Post-fracturing permeability, μm2 |
t1 | Fracturing time, s |
p | Flow pressure, MPa |
Young’s modulus, MPa | |
Half-length of the crack, m | |
w(x) | Crack width at x, m |
Δt | Time to reduce the reservoir pressure upon cessation of pumping on the ground, s |
rw | Wellbore radius, m |
Ct | Volume comprehensive compression coefficient, dimensionless |
S | Epidermal coefficient, dimensionless |
B | Formation volume coefficient of water, dimensionless |
pe | Reservoir pressure, MPa |
Greek Symbols | |
Seepage velocity of fracturing fluid, m/s | |
Liquid viscosity, MPas | |
Net pressure, MPa | |
Poisson’s ratio, dimensionless | |
Porosity, % |
Abbreviations
CBM | Coalbed methane |
GSI | Geological strength index |
DEN | Density |
GR | Natural gamma |
CALX | Calliper in the X-direction |
CALY | Calliper in the Y-direction |
IFO | Injection fall-off |
KGD | Khristianovic-Geertsma de Klerk |
UC | Undeformed coal |
CC | Cataclastic coal |
GC | Granulated coal |
MC | Mylonite coal |
References
- Durucan, S.; Edwards, J.S. The effects of stress and fracturing on permeability of coal. Min. Sci. Technol. 1986, 3, 205–216. [Google Scholar] [CrossRef]
- Jiang, B.; Qu, Z.H.; Wang, G.X. Effects of structural deformation on formation of coalbed methane reservoirs in Huaibei coalfield, China. Int. J. Coal Geol. 2010, 82, 175–183. [Google Scholar] [CrossRef]
- Cao, Y.X.; Davis, A.; Liu, R. The influence of tectonic deformation on some geochemical properties of coals–a possible indicator of outburst potential. Int. J. Coal Geol. 2003, 53, 69–79. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Pan, Z. Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images. Fuel 2020, 260, 116352. [Google Scholar] [CrossRef]
- Su, X.B.; Lin, X.Y.; Liu, S.B. Geology of coalbed methane reservoirs in the Southeast Qinshui Basin of China. Int. J. Coal Geol. 2005, 62, 197–210. [Google Scholar] [CrossRef]
- Connell, L.D.; Lu, M.; Pan, Z.J. An analytical coal permeability model for tri-axial strain and stress conditions. Int. J. Coal Geol. 2010, 84, 103–114. [Google Scholar] [CrossRef]
- Frodsham, K.; Gayer, R.A. The impact of tectonic deformation upon coal seams in the South Wales coalfield, UK. Int. J. Coal Geol. 1999, 38, 297–332. [Google Scholar] [CrossRef]
- Scott, S.; Anderson, B.; Crosdale, P. Coal petrology and coal seam gas contents of the Walloon Subgroup-Surat Basin, Queensland. Australia. Int. J. Coal Geol. 2007, 70, 209–222. [Google Scholar] [CrossRef]
- Pan, J.N.; Hou, Q.L.; Ju, Y.W. Coalbed methane sorption related to coal deformation structures at different temperatures and pressures. Fuel 2013, 102, 760–765. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Pan, Z. Unconventional natural gas accumulations in stacked deposits: A discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China. Acta. Geol. Sin-Engl. 2019, 93, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.X.; Liu, C.Y.; Fu, J.H. Hydraulic fracturing after water pressure control blasting for increased fracturing. Int. J. Rock Mech. Min. Sci. 2011, 48, 976–983. [Google Scholar] [CrossRef]
- Li, J.Q.; Liu, D.M.; Yao, Y.B. Evaluation of the reservoir permeability of anthracite coals by geophysical logging data. Int. J. Coal Geol. 2011, 87, 121–127. [Google Scholar] [CrossRef]
- Meng, Z.P.; Zhang, J.C.; Wang, R. In-Situ stress, pore pressure and stress-dependent permeability in the Southern Qinshui Basin. Int. J. Rock Mech. Min. Sci. 2011, 48, 122–131. [Google Scholar] [CrossRef]
- Xu, H.; Tang, D.Z.; Zhao, J.L. A new laboratory method for accurate measurement of the methane diffusion coefficient and its influencing factors in the coal matrix. Fuel 2015, 158, 239–247. [Google Scholar] [CrossRef]
- Zhao, J.L.; Tang, D.Z.; Xu, H. High production indexes and the key factors in coalbed methane production: A case in the Hancheng block, southeastern Ordos Basin, China. J. Pet. Sci. Eng. 2015, 130, 55–67. [Google Scholar] [CrossRef]
- Li, H. Major and minor structural features of a bedding shear zone along a coal seam and related gas outburst, Pingdingshan coalfield, northern China. Int. J. Coal Geol. 2001, 47, 101–113. [Google Scholar] [CrossRef]
- Li, H.Y.; Ogawa, Y. Pore structure of sheared coals and related coalbed methane. Environ. Geol. 2001, 40, 1455–1461. [Google Scholar] [CrossRef]
- Li, H.Y.; Ogawa, Y.; Shimada, S. Mechanism of methane flow through sheared coals and its role on methane recovery. Fuel 2003, 82, 1271–1279. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Tang, D. Coal pore size distributions controlled by the coalification process: An experimental study of coals from the Junggar, Ordos, and Qinshui basins in China. Fuel 2017, 206, 352–363. [Google Scholar] [CrossRef]
- Belyadi, H.; Fathi, E.; Belyadi, F. Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis; Gulf Professional Publishing: Cambidge, UK, 2017. [Google Scholar]
- Liu, J.; Yao, Y.; Liu, D.; Xu, L.; Elsworth, D.; Huang, S.; Luo, W. Experimental simulation of the hydraulic fracture propagation in an anthracite coal reservoir in the southern Qinshui basin, China. J. Petrol. Sci. Eng. 2018, 168, 400–408. [Google Scholar] [CrossRef]
- Yegireddi, S.; Uday Bhaskar, G. Identification of coal seam strata from geophysical logs of borehole using Adaptive Neuro-Fuzzy Inference System. J. Appl. Geophys. 2009, 67, 9–13. [Google Scholar] [CrossRef]
- Fu, X.H.; Qin, Y.; Wang, G.X.; Rudolph, V. Evaluation of coal structure and permeability with the aid of geophysical logging technology. Fuel 2009, 88, 2278–2285. [Google Scholar] [CrossRef]
- Fu, X.H.; Qin, Y.; Wang, G.X.; Rudolph, V. Evaluation of gas content of coalbed methane reservoirs with the aid of geophysical logging technology. Fuel 2009, 88, 2269–2277. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, D.Z.; Xu, H. The distribution of coal structure in Hancheng based on well logging data. J. China Coal Soc. 2013, 38, 1435–1442. [Google Scholar]
- Hu, X.; Yang, S.; Zhou, X. A quantification prediction model of coalbed methane content and its application in Pannan coalfield, Southwest China. J. Nat. Gas Sci. Eng. 2014, 21, 900–906. [Google Scholar] [CrossRef]
- Teng, J.; Yao, Y.B.; Liu, D.M. Evaluation of coal texture distributions in the southern Qinshui basin, North China: Investigation by a multiple geophysical logging method. Int. J. Coal Geol. 2015, 140, 9–22. [Google Scholar] [CrossRef]
- Hou, Y.H.; Yao, Y.B.; Yang, Y.H. Discriminate method of coal structure based on correspondence analysis technology: A case study in the Anze area, Qinshui Basin. J. China Coal Soc. 2016, 41, 2041–2049. [Google Scholar]
- Chen, J.; Huang, W.H.; Lu, X.X. Quantitative analysis on tectonically deformed coal and its physical properties in Shizhuang area of Qinshui Basin. J. China Coal Soc. 2017, 42, 732–737. [Google Scholar]
- Tang, S.; Tang, D.; Li, S.; Xu, H.; Tao, S.; Geng, Y.; Ma, L.; Zhu, X. Fracture system identification of coal reservoir and the productivity differences of CBM wells with different coal structures: A case in the Yanchuannan Block, Ordos Basin. J. Petrol. Sci. Eng. 2018, 161, 175–189. [Google Scholar] [CrossRef]
- Peng, L.Y.; Cui, R.F.; Ren, C. Classification of coal body structure using seismic lithology inversion information. J. China Coal Soc. 2013, 38, 410–415. [Google Scholar]
- Feng, X.Y.; Yang, Y.H.; Zuo, Q.Q. Coal structure quantitative prediction with sensitive-attribute and parameter-inversion fusion. Oil Geophys. Prospect. 2019, 54, 1115–1122. [Google Scholar]
- Cao, L.; Yao, Y.; Liu, D.; Yang, Y.; Wang, Y.; Cai, Y. Application of seismic curvature attributes in the delineation of coal texture and deformation in Zhengzhuang field, southern Qinshui Basin. AAPG Bull. 2020, 104, 1143–1166. [Google Scholar] [CrossRef]
- Hou, H.H.; Shao, L.Y.; Guo, S.Q. Evaluation and genetic analysis of coal structures in deep Jiaozuo Coalfield, northern China: Investigation by geophysical logging data. Fuel 2017, 209, 552–566. [Google Scholar] [CrossRef]
- Ma, F.Y.; Fu, C.C. Advanced pattern recognition based on neural network applied in coal structure. Chin. Control Decis. Conf. 2017. [Google Scholar] [CrossRef]
- Hou, J. Evaluation of coalbed methane reservoirs from geophysical log data using an improved fuzzy comprehensive decision method and a homologous neural network. Geophys. Prospect. 2002, 50, 453–462. [Google Scholar] [CrossRef]
- Yao, J.P.; Sima, L.Q.; Zhang, Y.G. Quantitative identification of deformed coals by geophysical logging. J. China Coal Soc. 2011, 36, 94–98. [Google Scholar]
- Huang, B.; Qin, Y.; Zhang, W.H. Identification of the coal structure and prediction of the fracturability in the No. 8 coal reservoir, Gujiao block, China. Energy Explor. Exploit. 2018, 36, 204–229. [Google Scholar] [CrossRef] [Green Version]
- Ren, P.F.; Xu, H.; Tang, D.Z. The identification of coal texture in different rank coal reservoirs by using geophysical logging data in northwest Guizhou, China: Investigation by principal component analysis. Fuel 2018, 230, 258–265. [Google Scholar] [CrossRef]
- Wang, Y.J.; Liu, D.M.; Cai, Y.D. Evaluation of structured coal evolution and distribution by geophysical logging methods in the Gujiao Block, northwest Qinshui basin, China. J. Nat. Gas Sci. Eng. 2018, 51, 210–222. [Google Scholar] [CrossRef]
- Li, C.L.; Yang, Z.B.; Sun, H.S. Construction of a logging interpretation model for coal structure from multi-coal seams area. J. China Coal Soc. 2020, 45, 721–730. [Google Scholar]
- Shi, J.X.; Zeng, L.B.; Dong, S.Q. Identification of coal structures using geophysical logging data in Qinshui Basin, China: Investigation by kernel Fisher discriminant analysis. Int. J. Coal Geol. 2020, 217, 103314. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Practical estimates or rock mass strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Hoek, E.; Marinos, P.; Benissi, M. Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. Bull. Eng. Geol. Environ. 1998, 57, 151–160. [Google Scholar] [CrossRef]
- Sonmez, H.; Ulusay, R. Modifications to the geological strength index (GSI) and their applicability to stability of slopes. Int. J. Rock Mech. Min. Sci. 1999, 36, 743–760. [Google Scholar] [CrossRef]
- Palmer, I.D.; Kutas, G.M. Hydraulic fracture height growth in San Juan Basin Coalbeds. Soc. Pet. Eng. 1991, 71–88. [Google Scholar] [CrossRef]
- Rodvelt, G. Vertical well construction and hydraulic fracturing for CBM completions. Coal Bed Methane Prospect Pipeline 2014, 101–135. [Google Scholar] [CrossRef]
- Zhang, X.N.; Kang, Y.S.; Jiang, S.Y. Fracturing curve types and their formation mechanism of NO.3 coal seam in Shizhuang block in Qinshui basin. J. China Coal Soc. 2017, 42, 441–451. [Google Scholar]
- Cai, L.; Yao, Y.B.; Zhang, Y.P. Hydraulic Fracturing Curve Types of Coal Reservoirs in Zhengzhuang Block, Qinshui Basin and their geological influence factors. Acta Petrol. Sin. 2015, 36, 83–90. [Google Scholar]
- Hu, Q.J.; Li, M.X.; Qiao, M.P. Analysis of key geologic factors of fracturing effect of CBM wells for high-rank coal in Southern Qinshui Basin. J. China Coal Soc. 2017, 42, 1506–1516. [Google Scholar]
- Bian, X.B.; Jiang, T.X.; Jia, C.G. A new post-frac evaluation method for shale gas wells based on fracturing curves. Nat. Gas Ind. B 2016, 3, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Zou, C.C.; Zhou, T.N. Factors affecting coalbed methane (CBM) well productivity in the Shizhuangnan block of southern Qinshui basin, North China: Investigation by geophysical log, experiment and production data. Fuel 2017, 191, 427–441. [Google Scholar] [CrossRef]
- Li, Y.; Tang, S.H.; Zhang, S.H. In situ analysis of methanogenic pathways and biogeochemical features of CBM co-produced water from the Shizhuangnan Block in the Southern Qinshui Basin, China. Energy Fuels 2020, 34, 5466–5475. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, D.M.; Cai, Y.D. Geological and hydrological controls on the accumulation of coalbed methane within the No. 3 coal seam of the southern Qinshui Basin. Int. J. Coal Geol. 2017, 182, 94–111. [Google Scholar] [CrossRef]
- Xue, G.W.; Liu, H.F.; Li, W. Deformed coal types and pore characteristics in Hancheng coalmines in Eastern Weibei coalfields. Int. J. Min. Sci. Tec. 2012, 22, 681–686. [Google Scholar] [CrossRef]
- Su, X.B.; Lin, X.Y. Coalbed Methane Geology; Coal Industry Press: Beijing, China, 2009. [Google Scholar]
- Guo, H.Y.; Su, X.B.; Xia, D.P. Relationship of the permeability and geological strength index (GSI) of coal reservoir and its significance. J. China Coal Soc. 2010, 35, 1319–1322. [Google Scholar]
- Khristianovic, S.A.; Zheltov, Y.P. Formation of vertical fractures by means of highly viscous liquid. In Proceedings of the Fourth World Petroleum Congress, Rome, Italy, 6–15 June 1955; pp. 579–586. [Google Scholar]
- Geertsma, J.; de Klerk, J. A rapid method of predicting width and extent of hydraulic induced fractures. J. Pet. Technol. 1969, 21, 1571–1581. [Google Scholar] [CrossRef]
- Detournay, E. Propagation regimes of fluid-driven fractures in impermeable rocks. Int. J. Geomech. 2015, 4, 35–45. [Google Scholar] [CrossRef]
- Ni, X.M.; Li, Z.Y.; Wang, Y.B. Establish and Application on prediction model about permeability of coal reservoir after hydraulic fracture. Coal Sci. Technol. 2014, 42, 92–95. [Google Scholar]
- Hu, Q.T.; Liu, L.; Li, Q.G. Experimental investigation on crack competitive extension during hydraulic fracturing in coal measures strata. Fuel 2020, 265, 117003. [Google Scholar] [CrossRef]
- Xu, Y.B.; Guo, S.Q. Technology and application of staged fracturing in coalbed methane horizontal well of soft and hard coal composite coal seam. J. China Coal Soc. 2019, 44, 1169–1177. [Google Scholar]
Wells | UC | CC | UC + CC | GC + MC | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Stratification | Gross Thickness (m) | Proportion (%) | Stratification | Gross Thickness (m) | Proportion (%) | Proportion (%) | Stratification | Gross Thickness (m) | Proportion (%) | |
SZ-68 | 1 | 0.35 | 5 | 2 | 3.15 | 49 | 54 | 2 | 2.95 | 46 |
SZ-63 | 2 | 2.70 | 43 | 2 | 2.10 | 33 | 76 | 2 | 1.50 | 24 |
SZ-39 | 1 | 1.00 | 16 | 2 | 0.90 | 15 | 31 | 2 | 4.20 | 69 |
SZ-48 | 1 | 0.33 | 5 | 2 | 2.80 | 44 | 49 | 2 | 3.20 | 51 |
SZ-37 | 1 | 0.10 | 2 | 2 | 6.25 | 98 | 100 | 0 | 0.00 | 0 |
SZ-78 | 1 | 0.84 | 12 | 1 | 0.75 | 11 | 23 | 2 | 5.21 | 77 |
SZ-79 | 1 | 2.06 | 32 | 1 | 1.26 | 19 | 51 | 2 | 3.21 | 49 |
SZ-71 | 1 | 0.30 | 5 | 2 | 3.60 | 63 | 68 | 2 | 1.80 | 32 |
SZ-38 | 1 | 1.02 | 16 | 1 | 0.98 | 15 | 31 | 3 | 4.50 | 69 |
SZ-94 | 1 | 0.30 | 5 | 2 | 2.80 | 43 | 48 | 3 | 3.40 | 52 |
SZ-33 | 2 | 1.14 | 18 | 2 | 2.90 | 45 | 63 | 2 | 2.40 | 37 |
SZ-64 | 1 | 0.05 | 1 | 2 | 2.60 | 34 | 35 | 3 | 4.95 | 65 |
SZ-98 | 1 | 0.70 | 12 | 2 | 3.50 | 58 | 70 | 1 | 1.80 | 30 |
SZ-29 | 2 | 1.81 | 30 | 2 | 3.10 | 51 | 81 | 2 | 1.20 | 19 |
SZ-12 | 1 | 0.60 | 10 | 2 | 4.20 | 67 | 77 | 1 | 1.50 | 23 |
SZ-21 | 0 | 0.00 | 0 | 2 | 4.40 | 67 | 67 | 2 | 2.15 | 33 |
SZ-26 | 1 | 0.20 | 3 | 2 | 3.50 | 53 | 56 | 3 | 2.90 | 44 |
SZ-75 | 1 | 0.20 | 4 | 1 | 2.30 | 43 | 47 | 3 | 2.90 | 53 |
SZ-16 | 2 | 2.25 | 33 | 1 | 3.21 | 47 | 80 | 2 | 1.34 | 20 |
SZ-25 | 1 | 0.80 | 14 | 1 | 2.40 | 40 | 54 | 2 | 2.70 | 46 |
SZ-31 | 1 | 0.36 | 6 | 1 | 3.40 | 58 | 64 | 2 | 2.10 | 36 |
SZ-69 | 1 | 0.60 | 10 | 1 | 1.60 | 27 | 37 | 2 | 3.70 | 63 |
SZ-90 | 1 | 0.74 | 11 | 1 | 0.40 | 6 | 17 | 2 | 5.30 | 83 |
SZ-45 | 1 | 0.03 | 1 | 0 | 0.00 | 0 | 1 | 3 | 5.85 | 99 |
SZ-32 | 2 | 0.48 | 8 | 2 | 3.63 | 59 | 67 | 2 | 2.00 | 33 |
SZ-28 | 1 | 0.37 | 6 | 1 | 1.55 | 24 | 30 | 2 | 4.60 | 70 |
SZ-55 | 1 | 0.25 | 4 | 2 | 4.95 | 80 | 84 | 1 | 0.96 | 16 |
SZ-04 | 1 | 0.10 | 1 | 2 | 3.10 | 45 | 46 | 2 | 3.70 | 54 |
SZ-89 | 0 | 0.00 | 0 | 2 | 0.00 | 0 | 0 | 2 | 6.55 | 100 |
SZ-66 | 2 | 2.41 | 39 | 2 | 2.70 | 43 | 82 | 1 | 1.10 | 18 |
SZ-05 | 2 | 1.56 | 28 | 2 | 3.80 | 67 | 95 | 1 | 0.30 | 5 |
SZ-44 | 1 | 0.97 | 17 | 1 | 1.90 | 34 | 51 | 1 | 2.80 | 49 |
SZ-11 | 1 | 0.20 | 4 | 2 | 3.57 | 67 | 71 | 2 | 1.57 | 29 |
SZ-22 | 1 | 0.18 | 3 | 2 | 5.30 | 93 | 96 | 1 | 0.20 | 4 |
SZ-60 | 0 | 0.00 | 0 | 1 | 3.60 | 61 | 61 | 2 | 2.30 | 39 |
SZ-88 | 1 | 0.60 | 10 | 1 | 4.70 | 77 | 87 | 1 | 0.80 | 13 |
SZ-06 | 1 | 1.10 | 15 | 2 | 2.15 | 30 | 45 | 2 | 3.85 | 55 |
SZ-34 | 1 | 0.15 | 2 | 1 | 4.70 | 63 | 65 | 2 | 2.65 | 35 |
SZ-83 | 1 | 0.25 | 4 | 2 | 3.55 | 60 | 64 | 2 | 2.10 | 36 |
SZ-07 | 1 | 1.50 | 23 | 2 | 4.80 | 73 | 96 | 1 | 0.30 | 4 |
SZ-80 | 1 | 1.50 | 23 | 3 | 4.80 | 73 | 96 | 1 | 0.30 | 4 |
SZ-73 | 1 | 0.15 | 2 | 1 | 0.10 | 1 | 3 | 2 | 6.55 | 97 |
SZ-91 | 1 | 1.21 | 20 | 2 | 1.54 | 26 | 46 | 2 | 3.25 | 54 |
SZ-54 | 1 | 0.94 | 16 | 1 | 0.56 | 9 | 25 | 3 | 4.50 | 75 |
SZ-92 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 1 | 6.90 | 100 |
SZ-65 | 1 | 0.80 | 12 | 2 | 2.10 | 31 | 43 | 3 | 3.80 | 57 |
SZ-19 | 1 | 0.53 | 8 | 1 | 1.21 | 19 | 27 | 2 | 4.66 | 73 |
SZ-08 | 2 | 1.89 | 27 | 2 | 4.25 | 61 | 88 | 1 | 0.85 | 12 |
SZ-84 | 1 | 0.60 | 9 | 1 | 1.40 | 21 | 30 | 2 | 4.70 | 70 |
SZ-14 | 0 | 0.00 | 0 | 1 | 2.70 | 44 | 44 | 2 | 3.50 | 56 |
SZ-95 | 1 | 0.50 | 8 | 1 | 2.10 | 35 | 43 | 2 | 3.40 | 57 |
SZ-74 | 1 | 0.25 | 4 | 2 | 1.60 | 24 | 28 | 2 | 4.75 | 72 |
SZ-93 | 1 | 0.43 | 7 | 2 | 5.63 | 89 | 96 | 1 | 0.25 | 4 |
SZ-20 | 1 | 2.25 | 34 | 2 | 3.52 | 53 | 87 | 1 | 0.93 | 13 |
SZ-87 | 1 | 1.70 | 26 | 2 | 3.50 | 53 | 79 | 1 | 1.40 | 21 |
SZ-67 | 1 | 0.35 | 5 | 1 | 4.80 | 73 | 78 | 2 | 1.45 | 22 |
SZ-10 | 1 | 2.55 | 42 | 2 | 0.59 | 10 | 52 | 3 | 2.96 | 48 |
SZ-24 | 1 | 2.60 | 38 | 1 | 3.70 | 54 | 92 | 1 | 0.50 | 8 |
SZ-42 | 1 | 0.25 | 4 | 1 | 0.15 | 2 | 6 | 1 | 6.10 | 94 |
SZ-85 | 1 | 0.25 | 4 | 2 | 3.00 | 45 | 49 | 2 | 3.45 | 51 |
SZ-15 | 2 | 2.78 | 43 | 1 | 1.63 | 25 | 68 | 2 | 2.00 | 32 |
SZ-97 | 1 | 1.30 | 19 | 2 | 3.83 | 56 | 75 | 2 | 1.67 | 25 |
SZ-02 | 1 | 1.76 | 23 | 1 | 1.30 | 17 | 40 | 2 | 4.50 | 60 |
SZ-01 | 1 | 0.43 | 7 | 1 | 0.90 | 15 | 22 | 2 | 4.60 | 78 |
SZ-81 | 1 | 0.80 | 11 | 1 | 1.90 | 27 | 38 | 1 | 4.30 | 62 |
SZ-96 | 2 | 2.54 | 40 | 1 | 1.31 | 20 | 60 | 2 | 2.55 | 40 |
SZ-17 | 1 | 1.25 | 18 | 3 | 4.20 | 60 | 78 | 2 | 1.50 | 22 |
SZ-86 | 1 | 0.79 | 12 | 2 | 2.17 | 34 | 46 | 2 | 3.36 | 54 |
SZ-40 | 1 | 0.78 | 12 | 2 | 2.65 | 41 | 53 | 2 | 3.10 | 47 |
SZ-18 | 1 | 0.55 | 9 | 1 | 2.67 | 43 | 52 | 2 | 2.98 | 48 |
SZ-47 | 1 | 0.10 | 2 | 2 | 3.65 | 73 | 75 | 1 | 1.25 | 25 |
SZ-03 | 1 | 1.09 | 17 | 2 | 4.04 | 64 | 81 | 2 | 1.20 | 19 |
SZ-100 | 1 | 0.78 | 12 | 1 | 4.38 | 68 | 80 | 2 | 1.25 | 20 |
SZ-35 | 1 | 1.30 | 23 | 2 | 1.90 | 34 | 57 | 1 | 2.40 | 43 |
SZ-82 | 1 | 1.30 | 21 | 1 | 1.54 | 25 | 46 | 2 | 3.25 | 54 |
SZ-27 | 0 | 0.00 | 0 | 1 | 1.20 | 19 | 19 | 2 | 5.25 | 81 |
SZ-76 | 1 | 0.61 | 10 | 2 | 3.15 | 50 | 60 | 1 | 2.50 | 40 |
SZ-61 | 1 | 1.26 | 19 | 2 | 3.22 | 47 | 66 | 2 | 2.31 | 34 |
SZ-36 | 1 | 0.15 | 2 | 1 | 3.80 | 54 | 56 | 2 | 3.05 | 44 |
SZ-77 | 1 | 1.11 | 17 | 2 | 4.22 | 64 | 81 | 1 | 1.22 | 19 |
SZ-09 | 1 | 0.28 | 5 | 2 | 3.21 | 56 | 61 | 3 | 2.21 | 39 |
SZ-70 | 1 | 0.93 | 16 | 2 | 3.88 | 67 | 83 | 2 | 1.00 | 17 |
SZ-62 | 1 | 1.47 | 23 | 1 | 0.32 | 5 | 28 | 2 | 4.51 | 72 |
SZ-23 | 2 | 1.35 | 20 | 1 | 0.21 | 3 | 23 | 3 | 5.33 | 77 |
SZ-72 | 2 | 3.10 | 45 | 2 | 1.25 | 18 | 63 | 2 | 2.55 | 37 |
SZ-13 | 0 | 0.00 | 0 | 1 | 1.75 | 27 | 27 | 3 | 4.75 | 73 |
SZ-99 | 1 | 2.58 | 37 | 1 | 0.21 | 3 | 40 | 2 | 4.26 | 60 |
SZ-30 | 1 | 0.15 | 2 | 1 | 0.65 | 9 | 11 | 2 | 6.20 | 89 |
SZ-56 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 1 | 6.00 | 100 |
SZ-43 | 1 | 1.70 | 30 | 2 | 3.40 | 60 | 90 | 1 | 0.60 | 10 |
SZ-41 | 1 | 2.00 | 30 | 1 | 3.40 | 52 | 82 | 1 | 1.20 | 18 |
SZ-46 | 1 | 1.55 | 24 | 2 | 3.85 | 60 | 84 | 1 | 1.00 | 16 |
SZ-49 | 2 | 3.79 | 60 | 1 | 0.25 | 4 | 64 | 2 | 2.31 | 36 |
SZ-52 | 1 | 4.60 | 63 | 2 | 2.41 | 33 | 96 | 1 | 0.33 | 4 |
SZ-53 | 1 | 1.80 | 27 | 2 | 2.80 | 42 | 69 | 1 | 2.10 | 31 |
SZ-57 | 1 | 1.44 | 21 | 2 | 4.54 | 65 | 86 | 1 | 1.03 | 14 |
SZ-50 | 1 | 1.45 | 22 | 2 | 3.38 | 50 | 72 | 2 | 1.88 | 28 |
SZ-58 | 1 | 1.39 | 24 | 1 | 0.90 | 16 | 40 | 2 | 3.50 | 60 |
SZ-51 | 1 | 1.20 | 18 | 2 | 4.10 | 61 | 79 | 1 | 1.40 | 21 |
SZ-59 | 1 | 1.04 | 18 | 2 | 3.14 | 54 | 72 | 2 | 1.68 | 28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Wang, Y.; Ni, X.; Tao, C.; Fan, J.; Wu, X.; Zhao, S. Classification of Coal Structure Combinations and Their Influence on Hydraulic Fracturing: A Case Study from the Qinshui Basin, China. Energies 2020, 13, 4559. https://doi.org/10.3390/en13174559
Liu D, Wang Y, Ni X, Tao C, Fan J, Wu X, Zhao S. Classification of Coal Structure Combinations and Their Influence on Hydraulic Fracturing: A Case Study from the Qinshui Basin, China. Energies. 2020; 13(17):4559. https://doi.org/10.3390/en13174559
Chicago/Turabian StyleLiu, Du, Yanbin Wang, Xiaoming Ni, Chuanqi Tao, Jingjing Fan, Xiang Wu, and Shihu Zhao. 2020. "Classification of Coal Structure Combinations and Their Influence on Hydraulic Fracturing: A Case Study from the Qinshui Basin, China" Energies 13, no. 17: 4559. https://doi.org/10.3390/en13174559
APA StyleLiu, D., Wang, Y., Ni, X., Tao, C., Fan, J., Wu, X., & Zhao, S. (2020). Classification of Coal Structure Combinations and Their Influence on Hydraulic Fracturing: A Case Study from the Qinshui Basin, China. Energies, 13(17), 4559. https://doi.org/10.3390/en13174559