The Design and Test for Degradation of Energy Density of a Silica Gel-Based Energy Storage System Using Low Grade Heat for Desorption Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Storage System
2.2. Sorption Tube Design and System Set-Up
2.3. Specification of Operating Conditions
2.4. Material Properties of Silica Gel
2.5. Measuring
3. Mathematical Models
3.1. Adsorption Isotherm
3.1.1. Freundlich Isotherm Model
3.1.2. Dubinin Isotherm
3.2. Adsorption Rate
3.3. Energy Balance
4. Results
4.1. Adsorption
4.2. Temperature
4.3. Power and Energy
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Error Analyses
References
- International Renewable Energy Agency (IRENA). Global Energy Transformation: A Roadmap to 2050; IRENA: Abu Dhabi, UAE, 2018; ISBN 1059-910X. [Google Scholar]
- U.S. EIA. Annual Energy Outlook 2019 with Projections to 2050; U.S. EIA: Washington, DC, USA, 2019; Volume 44, pp. 1–64. [Google Scholar]
- Edwards, J.; Bindra, H.; Sabharwall, P. Exergy analysis of thermal energy storage options with nuclear power plants. Ann. Nucl. Energy 2016, 96, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Chidambaram, L.A.; Ramana, A.S.; Kamaraj, G.; Velraj, R. Review of solar cooling methods and thermal storage options. Renew. Sustain. Energy Rev. 2011, 15, 3220–3228. [Google Scholar] [CrossRef]
- Yu, N.; Wang, R.Z.; Wang, L.W. Sorption thermal storage for solar energy. Prog. Energy Combust. Sci. 2013, 39, 489–514. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R. Sorption thermal energy storage: Concept, process, applications and perspectives. Energy Storage Mater. 2020, 27, 352–369. [Google Scholar] [CrossRef]
- Wolak, E. The cooling effect by adsorption-desorption cycles. E3S Web Conf. 2017, 14, 01052. [Google Scholar] [CrossRef]
- Silberberg, M.S. Principles of General Chemistry—V1.0M; McGraw-Hill Education: New York, NY, USA, 2009; p. 915. [Google Scholar]
- Li, S.L.; Wu, J.Y.; Xia, Z.Z.; Wang, R.Z. Study on the adsorption performance of composite adsorbent of CaCl2 and expanded graphite with ammonia as adsorbate. Energy Convers. Manag. 2009, 50, 1011–1017. [Google Scholar] [CrossRef]
- Li, T.X.; Wang, R.Z.; Oliveira, R.G.; Kiplagat, J.K.; Wang, L.W. A combined double-way chemisorption refrigeration cycle based on adsorption and resorption processes. Int. J. Refrig. 2009, 32, 47–57. [Google Scholar] [CrossRef]
- Zettl, B.; Englmair, G.; Steinmaurer, G. Development of a revolving drum reactor for open-sorption heat storage processes. Appl. Therm. Eng. 2014, 70, 42–49. [Google Scholar] [CrossRef]
- Sorbentsystems Desiccant Chart Comparisons. 2006. Available online: https://www.sorbentsystems.com/desiccants_charts.html (accessed on 5 May 2020).
- Aristov, Y.I.; Tokarev, M.M.; Freni, A.; Glaznev, I.S.; Restuccia, G. Kinetics of water adsorption on silica Fuji Davison RD. Microporous Mesoporous Mater. 2006, 96, 65–71. [Google Scholar] [CrossRef]
- Ng, K.C.; Chua, H.T.; Chung, C.Y.; Loke, C.H.; Kashiwagi, T.; Akisawa, A.; Saha, B.B. Experimental investigation of the silica gel-water adsorption isotherm characteristics. Appl. Therm. Eng. 2001, 21, 1631–1642. [Google Scholar] [CrossRef]
- Deshmukh, H.; Maiya, M.P.; Srinivasa Murthy, S. Study of sorption based energy storage system with silica gel for heating application. Appl. Therm. Eng. 2017, 111, 1640–1646. [Google Scholar] [CrossRef]
- Bales, C.; Gantenbein, P.; Jaenig, D.; Kerskes, H.; Summer, K.; Van Essen, M.; Weber, R. Laboratory Tests of Chemical Reactions and Prototype Sorption Storage Units. Available online: http://www.task49.iea-shc.org/data/sites/1/publications/task32-b4.pdf (accessed on 5 May 2020).
- Li, G.; Qian, S.; Lee, H.; Hwang, Y.; Radermacher, R. Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application. Energy 2014, 65, 675–691. [Google Scholar] [CrossRef]
- Mohammed, R.H.; Mesalhy, O.; Elsayed, M.L.; Su, M.C.; Chow, L. Revisiting the adsorption equilibrium equations of silica-gel/water for adsorption cooling applications. Int. J. Refrig. 2018, 86, 40–47. [Google Scholar] [CrossRef]
- Amorim, J.A.; Vieira, H.M.; Andrade, C.H.T.; Medeiros, J.M.; Santos, J.C.; Gurgel, J.M. Experimental Sorption Dynamic in Packed Bed of Silica Gel. J. Porous Media 2013, 16, 515–525. [Google Scholar] [CrossRef]
- Takahashi, R.; Sato, S.; Sodesawa, T.; Kawakita, M.; Ogura, K. High surface-area silica with controlled pore size prepared from nanocomposite of silica and citric acid. J. Phys. Chem. B 2000, 104, 12184–12191. [Google Scholar] [CrossRef]
- Sultan, M.; Miyazaki, T.; Koyama, S. Optimization of adsorption isotherm types for desiccant air-conditioning applications. Renew. Energy 2018, 121, 441–450. [Google Scholar] [CrossRef]
- Chakraborty, A.; Saha, B.B.; Aristov, Y.I. Dynamic behaviors of adsorption chiller: Effects of the silica gel grain size and layers. Energy 2014. [Google Scholar] [CrossRef]
- Traiva. technický—produktový list technický—produktový list. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiWxJiJyb_rAhWIvZQKHT2NDhQQFjAAegQIBBAB&url=https%3A%2F%2Fwww.traiva.cz%2F_doc%2F4835_technicky_list_SG_6.pdf&usg=AOvVaw3cDl7enXbJx_pacLORfwJN (accessed on 5 May 2020).
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, R.Z.; Wang, L.W. Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents. Appl. Therm. Eng. 2016, 100, 893–901. [Google Scholar] [CrossRef]
- Jähnig, D.; Hausner, R.; Wagner, W.; Isaksson, C. Thermo-Chemical storage for solar space heating in a single-family house. In Proceedings of the AEE—INTEC (Austria), Ecostock Conference, Pomona, NY, USA, 31 May–2 June 2006; pp. 1–7. [Google Scholar]
- Mohammed, R.H.; Mesalhy, O.; Elsayed, M.L.; Hou, S.; Su, M.; Chow, L.C. Physical properties and adsorption kinetics of silica-gel/water for adsorption chillers. Appl. Therm. Eng. 2018, 137, 368–376. [Google Scholar] [CrossRef]
- Gaeini, M. Thermochemical Seasonal Heat Storage for the Built Environment. Available online: https://research.tue.nl/files/70475072/20170704_Gaeini.pdf (accessed on 5 May 2020).
- Johannes, K.; Kuznik, F.; Hubert, J.L.; Durier, F.; Obrecht, C. Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings. Appl. Energy 2015, 159, 80–86. [Google Scholar] [CrossRef]
Symbol | Parameter | Value |
---|---|---|
Cps | Specific heat capacity of silica gel | 924 J/kg/K |
Cpw | Specific heat capacity of water | 4180 J/kg/K |
Cpv | Specific heat capacity of vapor | 1866 J/kg/K |
∆H | Isosteric heat of adsorption | 2.07 × 106 J/kg |
Ea | Activation energy | 3.73 × 104 J/mol |
Dso | Pre-exponential term | 2.54 × 10−4 m2/s |
Rp | Adsorbent particle radius | 1 × 10−3 m |
R | Universal gas constant | 8.314 J/mol/K |
Ṽ | Air flow rate | 3.0 m3/h |
dp | Pore diameter | (2.0–3.0) nm |
n | Uploading factor | 1.6 (-) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayisi, E.N.; Fraňa, K. The Design and Test for Degradation of Energy Density of a Silica Gel-Based Energy Storage System Using Low Grade Heat for Desorption Phase. Energies 2020, 13, 4513. https://doi.org/10.3390/en13174513
Ayisi EN, Fraňa K. The Design and Test for Degradation of Energy Density of a Silica Gel-Based Energy Storage System Using Low Grade Heat for Desorption Phase. Energies. 2020; 13(17):4513. https://doi.org/10.3390/en13174513
Chicago/Turabian StyleAyisi, Emmanuel Nyarko, and Karel Fraňa. 2020. "The Design and Test for Degradation of Energy Density of a Silica Gel-Based Energy Storage System Using Low Grade Heat for Desorption Phase" Energies 13, no. 17: 4513. https://doi.org/10.3390/en13174513
APA StyleAyisi, E. N., & Fraňa, K. (2020). The Design and Test for Degradation of Energy Density of a Silica Gel-Based Energy Storage System Using Low Grade Heat for Desorption Phase. Energies, 13(17), 4513. https://doi.org/10.3390/en13174513