Implications of Oil Price Fluctuations for Tourism Receipts: The Case of Oil Exporting Countries
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Data and Variables
3.2. Methodology
3.2.1. Cross-Sectional Dependency Test
3.2.2. Panel Unit Root Tests
3.2.3. Panel Cointegration Test
3.2.4. Panel Granger Non-Causality Test
- ;
- .
4. Empirical Findings
4.1. Descriptive Statistics
4.2. Cross-Sectional Dependency Test Results
4.3. Panel Unit Root Test
4.4. Panel Cointegration Test Results
4.5. Panel Causality Test
4.6. Robustness Check
5. Summary and Conclusions
6. Policy Implication
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Becken, S. Developing indicators for managing tourism in the face of peak oil. Tour. Manag. 2008, 29, 695–705. [Google Scholar] [CrossRef] [Green Version]
- Bandekar, B.; Sankaranarayanan, K.G. Contribution of Tourism Sector to India’s GDP. J. Radix Int. Educ. Res. Consort. 2014, 3, 1–11. [Google Scholar]
- World Travel and Tourism Council (WTTC). Economic Impact of Tourism. 2016. Available online: http://www.wttc.org/research/economic-research/economic-impact-analysis (accessed on 24 April 2020).
- World Travel & Tourism Council (WTTC). Retrieved 5 October 2019. Available online: https://www.wttc.org/-/media/files/reports/economic-impact-research/regions-2019/world2019.pdf (accessed on 24 April 2020).
- World Tourism Organization of the United Nations (UNWTO). Tourism Highlights. 2016. Available online: http://www.e-unwto.org/doi/book/10.18111/9789284418145 (accessed on 24 April 2020).
- Ghosh, A.R.; Ostry, J.D. Export instability and the external balance in developing countries. Staff Pap. 1994, 41, 214–235. [Google Scholar] [CrossRef]
- Gylfason, T. From Double Diversification to Efficiency and Growth. Comp. Econ. Stud. 2017, 59, 1–20. [Google Scholar] [CrossRef]
- Fletcher, J.; Fyall, A.; Gilbert, D.; Wanhill, S. Tourism Principles and Practice, 5th ed.; Pearson Education: London, UK, 2013. [Google Scholar]
- Sharpley, R. The challenges of economic diversification through tourism: The case of Abu Dhabi. Int. J. Tour. Res. 2002, 4, 221–235. [Google Scholar] [CrossRef]
- Hartwick, J.M. Intergenerational equity and the investing of rents from exhaustible resources. Am. Econ. Rev. 1977, 67, 972–974. [Google Scholar]
- Gunn, C.A.; Var, T. Tourism Planning: Basics, Concepts, Cases; Routledge: New York, NY, USA, 2002. [Google Scholar]
- Ghalia, T.; Fidrmuc, J. The curse of tourism? J. Hosp. Tour. Res. 2018, 42, 979–996. [Google Scholar] [CrossRef] [Green Version]
- Katircioglu, S.T. Revisiting the tourism-led-growth hypothesis for Turkey using the bounds test and Johansen approach for cointegration. Tour. Manag. 2009, 30, 17–20. [Google Scholar] [CrossRef]
- Shahbaz, M.; Kumar, R.R.; Ivanov, S.; Loganathan, N. The nexus between tourism demand and output per capita with the relative importance of trade openness and financial development: A study of Malaysia. Tour. Econ. 2017, 23, 168–186. [Google Scholar] [CrossRef] [Green Version]
- De Vita, G. The long-run impact of exchange rate regimes on international tourism flows. Tour. Manag. 2014, 45, 226–233. [Google Scholar] [CrossRef]
- Cheng, K.M.; Kim, H.; Thompson, H. The exchange rate and US tourism trade, 1973–2007. Tour. Econ. 2013, 19, 883–896. [Google Scholar] [CrossRef] [Green Version]
- Vita, G.D.; Kyaw, K.S. Role of the exchange rate in tourism demand. Ann. Tour. Res. 2013, 43, 624–627. [Google Scholar] [CrossRef]
- Tang, J.; Sriboonchitta, S.; Ramos, V.; Wong, W.K. Modelling dependence between tourism demand and exchange rate using the copula-based GARCH model. Curr. Issues Tour. 2016, 19, 876–894. [Google Scholar] [CrossRef]
- Kreishan, F.M. Tourism and economic growth: The case of Jordan. Eur. J. Soc. Sci. 2010, 15, 63–68. [Google Scholar]
- Tang, C.F.; Abosedra, S. Small sample evidence on the tourism-led growth hypothesis in Lebanon. Curr. Issues Tour. 2014, 17, 234–246. [Google Scholar] [CrossRef]
- Tang, C.F.; Abosedra, S. The impacts of tourism, energy consumption and political instability on economic growth in the MENA countries. Energy Policy 2014, 68, 458–464. [Google Scholar] [CrossRef]
- Becken, S. Oil, the global economy and tourism. Tour. Rev. 2011, 66, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Yeoman, I.; Lennon, J.J.; Blake, A.; Galt, M.; Greenwood, C.; McMahon-Beattie, U. Oil depletion: What does this mean for Scottish tourism? Tour. Manag. 2007, 28, 1354–1365. [Google Scholar] [CrossRef]
- Becken, S.; Ngyen, M.; Schiff, A. Developing an Economic Framework for Tourism and Oil; LEaP Report; Lincoln University: Christchurch, New Zealand, 2010; p. 12. Available online: www.lincoln.ac.nz/leap (accessed on 24 April 2020).
- Chatziantoniou, I.; Filis, G.; Eeckels, B.; Apostolakis, A. Oil prices, tourism income and economic growth: A structural VAR approach for European Mediterranean countries. Tour. Manag. 2013, 36, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Chung, L.; Tam, C.S.; Yuen, R.; Chan, S.; Yu, I.W. Tracking the Hong Kong Economy. Occas. Pap. 2012, 3, 2012. [Google Scholar]
- Logar, I.; van den Bergh, J.C. The impact of peak oil on tourism in Spain: An input–output analysis of price, demand and economy-wide effects. Energy 2013, 54, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Kisswani, K.M.; Zaitouni, M.; Moufakkir, O. An examination of the asymmetric effect of oil prices on tourism receipts. Curr. Issues Tour. 2020, 23, 500–522. [Google Scholar] [CrossRef]
- Becken, S.; Lennox, J. Implications of a long-term increase in oil prices for tourism. Tour. Manag. 2012, 33, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Lennox, J. Impacts of high oil prices on tourism in New Zealand. Tour. Econ. 2012, 18, 781–800. [Google Scholar] [CrossRef]
- Huang, X.; Silva, E.; Hassani, H. Causality between oil prices and tourist arrivals. Stats 2018, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Mønster, D.; Fusaroli, R.; Tylén, K.; Roepstorff, A.; Sherson, J.F. Causal inference from noisy time-series data—Testing the Convergent Cross-Mapping algorithm in the presence of noise and external influence. Future Gener. Comput. Syst. 2017, 73, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Katircioglu, S.; Katircioglu, S.; Altun, O. The moderating role of oil price changes in the effects of service trade and tourism on growth: The case of Turkey. Environ. Sci. Pollut. Res. 2018, 25, 35266–35275. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Gholipour, H.F.; Al-hajj, E. The nonlinear effects of oil prices on tourism arrivals in Malaysia. Curr. Issues Tour. 2020, 23, 942–946. [Google Scholar] [CrossRef]
- Meo, M.S.; Chowdhury, M.A.F.; Shaikh, G.M.; Ali, M.; Masood Sheikh, S. Asymmetric impact of oil prices, exchange rate, and inflation on tourism demand in Pakistan: New evidence from nonlinear ARDL. Asia Pac. J. Tour. Res. 2018, 23, 408–422. [Google Scholar] [CrossRef]
- Loganathan, N.; Streimikiene, D.; Mursitama, T.N.; Shahbaz, M.; Mardani, A. How Real Oil Prices and Domestic Financial Instabilities are Good for GCC Countries Tourism Demand in Malaysia? Econ. Sociol. 2018, 11, 112–125. [Google Scholar] [CrossRef]
- Amin, S.B.; Kabir, F.A.; Khan, F. Tourism and energy nexus in selected South Asian countries: A panel study. Curr. Issues Tour. 2019, 1–5. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators (Web-Based Online Database); World Bank: Washington, DC, USA, 2018; Available online: http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators&preview=on (accessed on 24 April 2020).
- Organization of the Petroleum Exporting Countries (OPEC). Proceedings of the OPEC Annual Statistical Bulletin 2015; OPEC: Vienna, Austria, 2015; p. 50. [Google Scholar]
- Fayissa, B.; Nsiah, C.; Tadasse, B. Impact of tourism on economic growth and development in Africa. Tour. Econ. 2008, 14, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Adamou, A.; Clerides, S. Prospects and limits of tourism-led growth: The international evidence. Rimini Cent. Econ. Anal. WP 41-09 2009. [Google Scholar] [CrossRef] [Green Version]
- Kyaw, K.S.; Macdonald, R. Capital flows and growth in developing countries: A dynamic panel data analysis. Oxf. Dev. Stud. 2009, 37, 101–122. [Google Scholar] [CrossRef]
- Sanchez Carrera, E.J.; Brida, J.G.; Risso, W.A. Tourism’s impact on long-run Mexican economic growth. Econ. Bull. 2008, 23, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Das, J.; Dirienzo., C. Global tourism competitiveness and freedom of the press: A nonlinear relationship. J. Tour. Res. 2009, 47, 470–479. [Google Scholar] [CrossRef]
- Johnson, T.; de Dios, E.; Martin, A.L. Governance and Institutional Quality and the Links with Economic Growth and Income Inequality: With Special Reference to Developing Asia; Asian Development Bank Economics Working Paper Series; Asian Development Bank: Mandaluyong, Philippines, 2010; p. 193. [Google Scholar]
- Saha, S.; Yap, G. The moderation effects of political instability and terrorism on tourism development: A cross-country panel analysis. J. Travel Res. 2014, 53, 509–521. [Google Scholar] [CrossRef]
- Saha, S.; Yap, G. Corruption and tourism: An empirical investigation in a non-linear framework. Int. J. Tour. Res. 2015, 17, 272–281. [Google Scholar] [CrossRef]
- Teorell, J.; Samanni, M.; Holmberg, S.; Rothstein, B. The quality of government dataset, version 6Apr11; The Quality of Government Institute, University of Gothenburg: Gothenburg, Sweden, 2011; Available online: http://www.qog.pol.gu.se (accessed on 24 April 2020).
- Song, H.; Witt, S.F. Forecasting international tourist flows to Macau. Tour. Manag. 2006, 27, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Rudez, H.N. The GDP impact on international tourism demand: A Slovenia based case. Tour. Hosp. Manag. 2008, 14, 217–228. [Google Scholar]
- Baltagi, B.H. Econometric Analysis of Panel Data, 3rd ed.; JW & Sons: London, UK, 2005. [Google Scholar]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef] [Green Version]
- Frees, E.W. Assessing cross-sectional correlation in panel data. J. Econom. 1995, 69, 393–414. [Google Scholar] [CrossRef]
- Maddala, G.S.; Wu, S. A comparative study of unit root tests with panel data and a new simple test. Oxf. Bull. Econ. Stat. 1999, 61, 631–652. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.F.; Chu, C.S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Pesaran, H.M. General Diagnostic Tests for Cross-Sectional Dependence in Panels; University of Cambridge, Cambridge Working Papers in Economics: Cambridge, UK, 2004; p. 435. [Google Scholar]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econom. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W. Co-integration and error correction: Representation, estimation, and testing. Econom. J. Econom. Soc. 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Westerlund, J. Testing for error correction in panel data. Oxf. Bull. Econ. Stat. 2007, 69, 709–748. [Google Scholar] [CrossRef] [Green Version]
- Dumitrescu, E.I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.C.; Chang, C.P. Tourism development and economic growth: A closer look at panels. Tour. Manag. 2008, 29, 180–192. [Google Scholar] [CrossRef]
- Tugcu, C.T. Tourism and economic growth nexus revisited: A panel causality analysis for the case of the Mediterranean Region. Tour. Manag. 2014, 42, 207–212. [Google Scholar] [CrossRef]
- Al-mulali, U.; Fereidouni, H.G.; Lee, J.Y.; Mohammed, A.H. Estimating the tourism-led growth hypothesis: A case study of the Middle East countries. Anatolia 2014, 25, 290–298. [Google Scholar] [CrossRef]
- Dogru, T.; Bulut, U. Is tourism an engine for economic recovery? Theory and empirical evidence. Tour. Manag. 2018, 67, 425–434. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Snieška, V.; Barkauskienė, K.; Barkauskas, V. The impact of economic factors on the development of rural tourism: Lithuanian case. Procedia-Soc. Behav. Sci. 2014, 156, 280–285. [Google Scholar]
- Shahbaz, M.; Naeem, M.; Ahad, M.; Tahir, I. Is natural resource abundance a stimulus for financial development in the USA? Resour. Policy 2018, 55, 223–232. [Google Scholar] [CrossRef]
International Tourist Arrivals (1000) | International Tourism Receipts | |||||||
---|---|---|---|---|---|---|---|---|
2010 | 2016 | 2017 | Change (%) | (US$ million) | ||||
16/15 | 17/16 | 2010 | 2016 | 2017 | ||||
Middle East | 55,442 | 55,556 | 58,113 | −4.4 | 4.6 | 52,150 | 58,959 | 67,654 |
North Africa | 19,682 | 18,895 | 21,717 | 5.0 | 14.9 | 9662 | 9003 | 10,009 |
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average | |
---|---|---|---|---|---|---|---|---|---|
Algeria | |||||||||
Int. Tourism receipts | 324,000 | 300,000 | 295,000 | 326,000 | 316,000 | 347,000 | 246,000 | 172,000 | 290,750 |
Number of arrivals | 2070 | 2395 | 2634 | 2733 | 2301 | 1710 | 2039 | 2451 | 2292 |
Bahrain | |||||||||
Int. Tourism receipts | 2,163,000 | 1,766,000 | 1,752,000 | 1,875,000 | 1,913,000 | 2,372,000 | 4,021,000 | 3,836,000 | 2,462,250 |
Number of arrivals | 11,952 | 6732 | 8062 | 9163 | 10,452 | 9670 | 10,158 | 11,370 | 9695 |
Iran | |||||||||
Int. Tourism receipts | 2,631,000 | 2,489,000 | 2,483,000 | 3,306,000 | 4,197,000 | 4,771,000 | 3,914,000 | 398,714 | |
Number of arrivals | 2938 | 3354 | 3834 | 4769 | 4968 | 5237 | 4942 | 4867 | 4364 |
Kuwait | |||||||||
Int. Tourism receipts | 574,000 | 644,000 | 780,000 | 619,000 | 615,000 | 931,000 | 831,000 | 643,000 | 704,625 |
Number of arrivals | 5208 | 5574 | 5729 | 6217 | 6528 | 6941 | 7055 | 6179 | |
Oman | |||||||||
Int. Tourism receipts | 1,072,000 | 1,515,000 | 1,723,000 | 1,888,000 | 1,971,000 | 2,247,000 | 2,390,000 | 2,791,000 | 1,949,625 |
Number of arrivals | 1441 | 1018 | 1241 | 1392 | 1611 | 1909 | 2335 | 2372 | 1625 |
Qatar | |||||||||
Int. Tourism receipts | 4,463,000 | 7,220,000 | 8,452,000 | 10,576,000 | 12,131,000 | 12,593,000 | 15,757,000 | 10,170,286 | |
Number of arrivals | 1699.5 | 2056.7 | 2323.5 | 2611.9 | 2839.2 | 2941.1 | 2938.2 | 2256.5 | 2458 |
Saudi Arabia | |||||||||
Int. tourism receipts | 7,536,000 | 9,317,000 | 8,400,000 | 8,690,000 | 9,263,000 | 11,183,000 | 13,438,000 | 14,848,000 | 10,334,375 |
Number of arrivals | 10,850 | 14,179 | 16,332 | 15,772 | 18,260 | 17,994 | 18,044 | 16,109 | 15,943 |
UAE | |||||||||
Int. tourism receipts | 8,577,000 | 9,204,000 | 10,924,000 | 12,389,000 | 15,221,000 | 17,481,000 | 19,496,000 | 21,048,000 | 14,292,500 |
Number of arrivals | |||||||||
Yemen | |||||||||
Int. Tourism receipts | 1,291,000 | 910,000 | 1,005,000 | 1,097,000 | 1,199,000 | 116,000 | 116,000 | 819,143 | |
Number of arrivals | 1025 | 829 | 874 | 990 | 1017 | 366.7 | 850 |
Variable | Mean | SD | Min | Max |
---|---|---|---|---|
LTR | 20.78 | 1.29 | 17.45 | 23.36 |
LOIL | 4.04 | 0.54 | 3.19 | 4.65 |
GFC | 27.37 | 14.83 | 15.49 | 33.78 |
GEX | 2.79 × 1010 | 3.09 × 1010 | 2.38 × 109 | 1.67 × 1011 |
GDPPC | 21,907.78 | 21,456.27 | 538.2873 | 94,944.09 |
EF | 61.579 | 9.814 | 35.9 | 77.7 |
I | 5.977 | 6.703 | −4.863 | 39.26 |
LTR | LOIL | GFC | GEX | GDPPC | EF | |
---|---|---|---|---|---|---|
LOIL | 0.264 | |||||
GFC | −0.458 | −0.362 | ||||
GEX | 0.519 | 0.385 | −0.240 | |||
GDPPC | 0.601 | 0.131 | −0.414 | 0.163 | ||
EF | 0.231 | 0.035 | −0.291 | −0.348 | 0.617 | |
I | 0.036 | 0.172 | 0.135 | 0.142 | −0.475 | −0.517 |
Pesaran (2004) | ||
---|---|---|
Statistic | p-Value | |
LTR | 7.460 | 0.000 |
LOIL | 5.832 | 0.000 |
GDPPC | 8.165 | 0.000 |
GFC | 14.00 | 0.000 |
GEX | 6.182 | 0.000 |
I | 11.55 | 0.000 |
EF | 8.177 | 0.000 |
Frees test of cross-sectional independence = 0.278 | ||
Note: Critical values from Frees’ Q distribution: | ||
α | Statistic | |
0.10 | 0.3583 | |
0.05 | 0.4923 | |
0.01 | 0.7678 |
M and W | LLC | IPS | CADF | |||||
---|---|---|---|---|---|---|---|---|
Levels | Statistic | p-Value | Statistic | p-Value | Statistic | p-Value | Statistic | p-Value |
LTR | 5.113 | 0.745 | 0.798 | 0.787 | 1.294 | 0.902 | −0.039 | 1.000 |
LOIL | 0.884 | 0.998 | 3.460 | 0.999 | 4.806 | 1.000 | −0.991 | 0.944 |
GDPPC | 0.265 | 1.000 | 1.387 | 0.917 | 6.814 | 1.000 | −2.202 | 0.181 |
GFC | 1.649 | 0.989 | −1.026 | 0.152 | 1.993 | 0.976 | −1.057 | 0.926 |
GEX | 11.722 | 0.164 | −1.233 | 0.108 | −2.103 | 0.136 | −1.998 | 0.312 |
I | 10.248 | 0.248 | −1.584 | 0.056 | −1.205 | 0.114 | −2.118 | 0.230 |
First Differences | ||||||||
LTR | 63.776 *** | 0.000 | −4.168 *** | 0.000 | −4.195 *** | 0.000 | −2.791 ** | 0.017 |
LOIL | 27.260 *** | 0.000 | −11.273 *** | 0.000 | −2.663 *** | 0.003 | −3.158 *** | 0.002 |
GDPPC | 16.822 ** | 0.032 | −2.351 *** | 0.009 | −1.738 ** | 0.041 | −2.869 ** | 0.011 |
GFC | 19.849 ** | 0.010 | −3.435 *** | 0.000 | −1.633 * | 0.051 | −2.947 *** | 0.007 |
GEX | −1.483 * | 0.075 | −4.147 *** | 0.000 | −1.564 * | 0.058 | −3.830 *** | 0.001 |
I | 58.141 *** | 0.000 | −6.942 *** | 0.000 | −4.239 *** | 0.000 | −2.912 *** | 0.009 |
Method | Statistic | p-Value | |
---|---|---|---|
Kao | MDF | −5.713 *** | 0.005 |
DF | −2.041 *** | 0.009 | |
ADF | −6.027 ** | 0.010 | |
Westerlund | Gt | −4.639 *** | 0.003 |
Ga | −3.527 * | 0.056 | |
Pt | −5.734 ** | 0.034 | |
Pa | −9.583 * | 0.064 |
Hypothesis | Wald Statistic | Z-Bar Statistic | p-Value | Causal Statistic |
---|---|---|---|---|
LOIL LTR | 4.626 *** | 6.245 | 0.000 | YES |
LTR LOIL | 0.834 | 1.053 | 0.170 | NO |
GDPPC LTR | 3.126 *** | 5.261 | 0.003 | YES |
LTR GDPPC | 2.031 ** | 2.988 | 0.016 | YES |
GFC LTR | 1.851 * | 2.491 | 0.052 | YES |
LTR GFC | 4.173 *** | 5.806 | 0.001 | YES |
GEX LTR | 1.895 * | 2.351 | 0.072 | YES |
LTR GEX | 0.302 | 0.773 | 0.219 | NO |
I LTR | 1.086 | 1.536 | 0.103 | NO |
LTR I | 0.871 | 1.103 | 0.161 | NO |
EF LTR | 1.716 * | 2.311 | 0.085 | YES |
LTR EF | 0.285 | 0.694 | 0.251 | NO |
One-Step GMM (1) | Two-Step GMM (2) | |
---|---|---|
LTRt−1 | 0.85 ** (0.02) | 0.92 *** (0.007) |
LOIL | −1.13 ** (0.04) | −0.35 *** (0.008) |
GDPPC | 0.64 * (0.06) | 0.04 ** (0.04) |
GFC | −0.11 * (0.09) | −0.12 ** (0.04) |
GEX | 1.05 ** (0.03) | 2.3 *** (0.007) |
I | 0.03 *** (0.002) | 0.08 * (0.09) |
EF | −0.12 * (0.07) | −0.05 ** (0.03) |
Constant | 6.02 * (0.09) | 10.82 * (0.08) |
Time Dummy | Yes | Yes |
Instruments | L1, L2 | L1, L2 |
AR(1) | 0.12 | 0.16 |
AR(2) | 0.32 | 0.41 |
Hansen (p-value) | 0.21 | 0.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hesami, S.; Rustamov, B.; Rjoub, H.; Wong, W.-K. Implications of Oil Price Fluctuations for Tourism Receipts: The Case of Oil Exporting Countries. Energies 2020, 13, 4349. https://doi.org/10.3390/en13174349
Hesami S, Rustamov B, Rjoub H, Wong W-K. Implications of Oil Price Fluctuations for Tourism Receipts: The Case of Oil Exporting Countries. Energies. 2020; 13(17):4349. https://doi.org/10.3390/en13174349
Chicago/Turabian StyleHesami, Siamand, Bezhan Rustamov, Husam Rjoub, and Wing-Keung Wong. 2020. "Implications of Oil Price Fluctuations for Tourism Receipts: The Case of Oil Exporting Countries" Energies 13, no. 17: 4349. https://doi.org/10.3390/en13174349