FP-TES: A Fluidisation-Based Particle Thermal Energy Storage, Part I: Numerical Investigations and Bulk Heat Conductivity
Abstract
:1. Introduction
- A validation of the FP-TES transport principle utilising comparably fast simulations with simplified geometries—ideally powder transport via plug flow—aiming for efficient countercurrent heat exchange. Subsequent determination of an advanced geometry for a test bench aimed for minimum dead storage volume and minimum foot print.
- The improvement of fluidic design advanced geometry by stabilising local pressure losses and related particulate mass flows aiming for maximum flexibility and stability during operation.
- The validation of mass flow control of the advanced geometry via co-simulation of FP-TES with a controller code and the evaluation of possible minimum and maximum stable mass fluxes.
2. Basic Concept of FP-TES
3. Numerical Simulation Approach
3.1. Simulation Set-Up
- Adiabatic wall treatment
- Buoyancy effects are taken into account
- Empiric fixed bed porosity is taken into account
- Gas to wall, particle to wall and particle to particle friction and impacts are taken into account
- Gravitation is taken into account
- Isothermal simulation
- Sphericity of particles is taken into account
- Wetness of air and bed materials are neglected
3.2. Co-Simulation Approach
4. Numerical Investigation Results
4.1. Results of the Simulations with Simplified Geometries
4.2. Results of the Simulations with Advanced Geometries
5. Thermal Insulation
- Type I is to directly solve the Laplace equation for heat conduction for the beds conductivities and geometry, which is obviously extremely complex and will have to involve numerical methods mostly.
- Type II introduces thermal resistances in both phases and tries to combine them in a way that would represent wanted correlations (Ohmic analogs), for example, series or parallel arrangements of phases.
- Type III methods calculate the thermal conductivity of a unit cell, which is assumed representative for the whole bed. This can be seen as a compromise between the other two types and will yield sufficiently precise results at reasonable expense.
6. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Acronyms | |
BC | Boundary Conditions |
CPFD | Computational Particle Fluid Dynamics |
FP-TES | Fluidisation-based Particulate—Thermal Energy Storage |
FG | Fluidisation Grade |
HEX | Heat Exchanger |
IET | Institute for Energy-Systems and Thermodynamics |
LES | Large Eddy Simulation |
P2H2P | Power to Heat to Power |
SGS | Smagorinsky Subgrid Scale |
TES | Thermal Energy Storage |
Latin Symbols | |
A | Cross section, (m) |
B | Deformation parameter, (-) |
d | Diameter, (m) |
g | Gravitational acceleration, () |
h | Height, (m) |
k | Ratio of thermal conductivity, (-) |
Mass flow, () | |
N | Model variable, (-) |
p | Pressure, () |
S | Sphericity, (-) |
s | Thickness, (mm) |
T | Temperature, (K) |
t | Time, (s) |
u | Velocity, (m/s) |
V | Volume, (m) |
Greek Symbols | |
Pressure gradients, () | |
Time difference, (s) | |
Mass flux, () | |
Thermal conductivity, () | |
Density, () | |
Porosity, (−) | |
Indices | |
a | Ambient |
Cylindrical | |
Driving | |
Equilibrium | |
f | Fluid |
Fraction | |
Heat exchanger | |
hopper | |
L | Left |
M | Middle |
Minimum fluidisation | |
p | Particle |
R | Right |
W | Wall |
References
- Agency, I.E. Market Report Series: Renewables 2018; Technical Report; IEA: Paris, France, 2015. [Google Scholar]
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic Growth, renewable Electricity and natural Resources contribute to CO2 Emissions. Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Schwaiger, K.; Haider, M.; Steiner, P.; Hämmerle, M.; Wünsch, D. Fluidized Bed Facility and Method for Conveying a Solid Bulk Product. Austria WO Patent Application No. WO2020097657A1, 13 November 2019. [Google Scholar]
- Schwaiger, K. Development of a Novel Particle Reactor/Heat-Exchanger Technology for Thermal Energy Storages. Ph.D. Thesis, TU Wien, Vienna, Austria, 2016. [Google Scholar]
- Schwaiger, K.; Haider, M.; Haemmerle, M.; Wuensch, D.; Obermaier, M.; Beck, M.; Niederer, A.; Bachinger, S.; Radler, D.; Mahr, C.; et al. sandTES—An Active Thermal Energy Storage System Based on the Fluidisation of Powders. Energy Procedia 2014, 49, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Steiner, P.; Schwaiger, K.; Walter, H.; Haider, M. Active fluidised bed technology used for thermal energy storage. In Proceedings of the ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers Digital Collection, Charlotte, NC, USA, 26–30 June 2016. [Google Scholar]
- Sakadjian, B.; Hu, S.; Maryamchik, M.; Flynn, T.; Santelmann, K.; Ma, Z. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles. Energy Procedia 2015, 69, 1404–1411. [Google Scholar] [CrossRef] [Green Version]
- Rovense, F.; Reyes-Belmonte, M.; González-Aguilar, J.; Amelio, M.; Bova, S.; Romero, M. Flexible electricity dispatch for CSP plant using un-fired closed air Brayton cycle with particles based thermal energy storage system. Energy 2019, 173, 971–984. [Google Scholar] [CrossRef]
- Farsi, A.; Dincer, I. Thermodynamic assessment of a hybrid particle-based concentrated solar power plant using fluidised bed heat exchanger. Solar Energy 2019, 179, 236–248. [Google Scholar] [CrossRef]
- Ma, Z.; Davenport, P.; Zhang, R. Design analysis of a particle-based thermal energy storage system for concentrating solar power or grid energy storage. J. Energy Storage 2020, 29, 101382. [Google Scholar] [CrossRef]
- Gomez-Garcia, F.; Gauthier, D.; Flamant, G. Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage. Appl. Energy 2017, 190, 510–523. [Google Scholar] [CrossRef]
- Karimipour, S.; Pugsley, T. Application of the particle in cell approach for the simulation of bubbling fluidised beds of Geldart A particles. Powder Technol. 2012, 220, 63–69. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, Y.; Li, T.; Lu, C. A critical validation study on CPFD model in simulating gas–solid bubbling fluidised beds. Powder Technol. 2014, 263, 121–134. [Google Scholar] [CrossRef]
- Chen, C.; Werther, J.; Heinrich, S.; Qi, H.Y.; Hartge, E.U. CPFD simulation of circulating fluidised bed risers. Powder Technol. 2013, 235, 238–247. [Google Scholar] [CrossRef]
- Kraft, S.; Kirnbauer, F.; Hofbauer, H. CPFD simulations of an industrial-sized dual fluidised bed steam gasification system of biomass with 8 MW fuel input. Appl. Energy 2017, 190, 408–420. [Google Scholar] [CrossRef]
- Bandara, J.C.; Thapa, R.; Nielsen, H.K.; Moldestad, B.M.E.; Eikeland, M.S. Circulating fluidised bed reactors–part 01: Analyzing the effect of particle modelling parameters in computational particle fluid dynamic (CPFD) simulation with experimental validation. Part. Sci. Technol. 2020, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, N.; Kubo, M.; Yomoda, N. An 1D-3D Integrating Numerical Simulation for Engine Cooling Problem; Technical Report; SAE Technical Paper: Detroit, MI, USA, 2006. [Google Scholar]
- Arendt, K.; Krzaczek, M. Co-simulation strategy of transient CFD and heat transfer in building thermal envelope based on calibrated heat transfer coefficients. Int. J. Therm. Sci. 2014, 85, 1–11. [Google Scholar] [CrossRef]
- Unterluggauer, J.; Doujak, E.; Bauer, C. Numerical fatigue analysis of a prototype Francis turbine runner in low-load operation. Int. J. Turbomach. Propuls. Power 2019, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Wünsch, D. Advanced Regenerator: A Counter-Current Fluidized Bed Regenerator Utilizing a Pressure Gradient for Powder Transport. Master’s Thesis, TU Wien, Vienna, Austria, 2016. [Google Scholar]
- Sulzgruber, V.; Wünsch, D.; Haider, M.; Walter, H. FP-TES: A Fluidisation Based Particle Thermal Energy Stotage, Part II: Numerical Investigations. Energies 2020. Submitted. [Google Scholar] [CrossRef]
- Sulzgruber, V.; Wünsch, D.; Haider, M.; Walter, H. Numerical investigation on the flow behaviour of a novel fluidisation based particle thermal energy storage (FP-TES). Energy 2020, 200, 117528. [Google Scholar] [CrossRef]
- Yang, W.C. Handbook of Fluidization and Fluid-Particle Systems; CRC Press: Cleveland, OH, USA, 2003. [Google Scholar]
- Rhodes, M.J. Introduction to Particle Technology; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Frazzica, A.; Cabeza, L.F. Recent Advancements in Materials and Systems for Thermal Energy Storage: An Introduction to Experimental Characterization Methods; Springer: Heidelberg, Germany, 2018. [Google Scholar]
- Calderón, A.; Barreneche, C.; Palacios, A.; Segarra, M.; Prieto, C.; Rodriguez-Sanchez, A.; Fernández, A.I. Review of solid particle materials for heat transfer fluid and thermal energy storage in solar thermal power plants. Energy Storage 2019, 1, e63. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, P.J.; Snider, D. An improved Collision Damping Time for MP-PIC Calculations of dense Particle Flow with Applications to polydisperse sedimenting Bed Sand colliding Particle Pets. Chem. Eng. Sci. 2010, 65, 6014–6028. [Google Scholar] [CrossRef]
- Snider, D. Three fundamental granular Flow Experiments and CPFD Predictions. Powder Technol. 2007, 176, 36–46. [Google Scholar] [CrossRef]
- Wen, C.; Yu, Y. Mechanics of Fluidisation. Chem. Eng. Prog. Symp. 1966, 62, 100–111. [Google Scholar]
- Yang, W.C.; Dekker, A.O. (Eds.) Handbook of Fluidisation and Fluid-Particle Systems; CRC Press: New York, NY, USA, 2003. [Google Scholar]
- Smagorinsky, J. General Circulation Experiments with the Primitive Equations. I. The Basic Experiment. Mon. Weather. Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Hain, K. The partial Donor Cell Method. J. Comput. Phys. 1987, 73, 131–147. [Google Scholar] [CrossRef]
- Schulze, D. Powders and Bulk Solids: Behavior, Characterization, Storage and Flow Schulze, Dietmar; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kind, M.; Martin, H.; Stephan, P.; Roetzel, W.; Spang, B.; Müller-Steinhagen, H.; Luo, X.; Kleiber, M.; Joh, R.; Wagner, W.; et al. VDI Heat Atlas; VDI Gesellschaft Verfahrenstechnik und, Ed.; Springer: Heidelberg, Germany, 2010. [Google Scholar]
Parameters | Description |
---|---|
Analysis type | Transient |
Temperature | Isothermal |
Particle and fluid treatment | Eulerian–Lagrangian formulation |
Turbulence model | LES |
Timestep | Automatic timestep |
Advection scheme | Partial donor cell differencing ( and ) |
Min. | Mean | Max. | Sphericity S | |||
---|---|---|---|---|---|---|
37 C | 0.53 | 72 m | 86 m | 100 m | 0.8 | ≈7 mm/s |
Simplified Geometry (a) | Simplified Geometry (b) | Advanced Geometry (c) | |
---|---|---|---|
Number of Cells (million) | 0.2 | 0.6 | 0.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wünsch, D.; Sulzgruber, V.; Haider, M.; Walter, H. FP-TES: A Fluidisation-Based Particle Thermal Energy Storage, Part I: Numerical Investigations and Bulk Heat Conductivity. Energies 2020, 13, 4298. https://doi.org/10.3390/en13174298
Wünsch D, Sulzgruber V, Haider M, Walter H. FP-TES: A Fluidisation-Based Particle Thermal Energy Storage, Part I: Numerical Investigations and Bulk Heat Conductivity. Energies. 2020; 13(17):4298. https://doi.org/10.3390/en13174298
Chicago/Turabian StyleWünsch, David, Verena Sulzgruber, Markus Haider, and Heimo Walter. 2020. "FP-TES: A Fluidisation-Based Particle Thermal Energy Storage, Part I: Numerical Investigations and Bulk Heat Conductivity" Energies 13, no. 17: 4298. https://doi.org/10.3390/en13174298
APA StyleWünsch, D., Sulzgruber, V., Haider, M., & Walter, H. (2020). FP-TES: A Fluidisation-Based Particle Thermal Energy Storage, Part I: Numerical Investigations and Bulk Heat Conductivity. Energies, 13(17), 4298. https://doi.org/10.3390/en13174298