Laboratory Testing of Novel Polyfraction Nanoemulsion for EOR Processes in Carbonate Formations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Core Sample Preparation
2.2.2. Core Sample Permeability and Porosity Measurement
2.2.3. Surface Tension and Contact Angle Measurement
2.2.4. Viscosity Measurement
2.2.5. Core Flooding Tests
3. Experimental Results
3.1. Measurement of Porosity Coefficient and Permeability; Determination of Saturation with Reservoir Fluids
3.2. Measurement of Surface Tension and Contact Angle
3.3. Measurement of Rheological Properties of Displacement Fluids
3.4. Oil Displacement with Solutions with the Addition of the New Nanoemulsion
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
EOR | Enhanced oil recovery |
HPHT | High pressure high temperature |
CMC | Critical micelle concentration |
UCS | Uniaxial compressive strength |
BPR | Back pressure regulator |
GOR | Gas oil ratio |
PV | Pore volume |
OOIP | Original oil in place |
μ | Viscosity (mPa·s) |
K | Consistency index (mPa·sn) |
Shear rate (s−1) | |
n | Power law exponent |
References
- Quadri, S.M.R.; Shoaib, M.; Al Sumaiti, A.M. Screeining of Polymers for EOR in High Temperature, High Salinity and Carbonate Reservoir Conditions. In Proceedings of the International Petroleum Conference, Doha, Qatar, 6–9 December 2015. IPTC-18436-MS. [Google Scholar]
- Alvardo, V.; Manrique, E. Enhanced Oil Recovery, An Update Review. Energies 2010, 3, 1529. [Google Scholar] [CrossRef]
- Braccalenti, E.; Del Gaudio, L.; Belloni, A.; Albonico, E.; Radaelli, E.; Bartosek, M. Enhancing oil Recovery with Nanoemulsuon Flooding. In Proceedings of the 13th Offshore Mediterranean Conference and Exhibition, Ravena, NY, USA, 29–31 March 2017. [Google Scholar]
- Taber, J.J.; Martin, F.D.; Seright, R.S. EOR Screening Criteria Revised Part 1, Introduction to Screening Criteria and Enhanced Recovery Field Projects. SPE Res. Eng. 1997, 12, 189–198, SPE-35385-PA. [Google Scholar] [CrossRef] [Green Version]
- Stosur, G.J. EOR: Past, Present and What the Next 25 Years may Bring. In Proceedings of the SPE International Improved Oil Recovery Conference in Asia Pacific, Kuala Lumpur, Malaysia, 20–21 October 2003. SPE-84864-MS. [Google Scholar]
- Babadagli, T. Philosophy of EOR. In Proceedings of the SPE/IATMI Asia Pacific Oil and Gas Conference and Exhibition, Bali, Indonesia, 29–31 October 2019. SPE-196362. [Google Scholar]
- Najafabadi, N.F.; Delshad, M.; Sepehrnoori, K.; Nguyen, Q.P.; Zang, J. Chemical Flooding of Fractured Carbonates Using Wettability Modifiers. In Proceedings of the IOR Symposium, Tulsa, OK, USA, 19–23 April 2008. SPE-113369. [Google Scholar]
- Al Harbi, A.M.; Gao, J.; Kwak, H.T.; Abdel-Fattah, A.I. The Study of Nanosurfactannt EOR in Carbonates by Advanced NMR Technique. In Proceedings of the Abu Dhabi International Potroleum Exhibition & Conference, Abu Dhabi, UAE, 13–16 November 2017. SPE-188710-MS. [Google Scholar]
- Abdelgawad, K.Z.; Mahmoud, M.A. High-Performance EOR System in Carbonate Reservoirs. In Proceedings of the SPE Saudi Arabia Section Annual Technical Symposium and Exhibition, Al Khobar, Saudi Arabia, 21–24 April 2014. SPE-172182. [Google Scholar]
- Manrique, E.J.; Muci, V.E.; Gurfinkel, M.E. EOR Field Experience in Carbonate Reservoir in United States. In Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 22–26 April 2006. SPE-100063. [Google Scholar]
- Alvarez, J.M.; Sawatzky, R.P. Waterflooding: Same Old, Same Old? In Proceedings of the SPE Heavy Oil Conference Canada, Calgary, AB, Canada, 11–13 June 2013. SPE-165406. [Google Scholar]
- Hamouda, A.A.; Gomari, K.A.R. Influence of Temperature Wettability Alteration of Carbonate Reservoir. In Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 22–26 April 2008. SPE-99848. [Google Scholar]
- Zhang, Y.; Xie, X.; Morrow, N.R. Waterflood Performance by Injection of Brine with Different Salinity for Reservoir Cores. In Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA, 11–14 November 2007. SPE-109849. [Google Scholar]
- Nur, H.A.; Nurul, A.G.; Tengku, A.T.M.; Sitinoor, A.I.; Effah, Y.; Noorsuhana, M.Y. Nanoemulsion Applications in Enhanced Oil Recovery and Wellbore Cleaning: An Overview. Appl. Mech. Mater. 2015, 754, 1161–1168. [Google Scholar]
- Hirasaki, G.J.; Miller, C.A. Recent Advances in Surfactan EOR. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2008. SPE-115386. [Google Scholar]
- Abdel-Fattah, A.I.; Moshat, A.; Alsakar, M.; Gizzatov, A. NanoSurfactant for EOR in Carbonate Reservoirs. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 24–27 April 2017. SPE-188046. [Google Scholar]
- Teletzke, G.F.; Aattenbarger, R.C.; Wilkinson, J.R. Enhanced Oil Recovery PilotTesting Best Practice. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 3–6 November 2008. SPE-118055. [Google Scholar]
- Manrique, E.; Thomas, C.; Ravikiran, R.; Izadi, M.; Lantz, M.; Romero, J.; Alvardo, V. EOR: Current Status and Opportunieties. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010. SPE-130113. [Google Scholar]
- Al-Mudhafar, W.J.; Wojtanowicz, A.K.; Rao, D.N. Gas and Dawnohole Water Sink-Assisted Gravity Drainage GDWS-AGD EOR Proces: Field-Scale Evaluation and Recovery Optimization. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 14–18 April 2018. SPE-190163-MS. [Google Scholar]
- U.S. International Information Administration. Office of Energy Analysis, Department of Energy: Washington, DC, USA. Annual Energy Review. Available online: https://www.eia.gov/totalenergy/data/annual/index.php (accessed on 10 April 2020).
- Fletcher, A.; Davis, J. How EOR can be Transvered by Nanotechnology. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010. SPE-129531-MS. [Google Scholar]
- Elkady, M. Application of nanotechnology in EOR, Polymer-Nano Flooding the Nearest Future of Chemical EOR. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, UAE, 26–28 September 2016. SPE-184746-STU. [Google Scholar]
- Lau, H.C.; Yu, M.; Nguyen, Q.P. Nanotechnology for Oilfield Applications: Challenges and Impact. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Aby Dhabi, UAE, 7–10 November 2016. SPE-183301-MS. [Google Scholar]
- Mashat, A.; Abdel-Fattah, A.; Gizzatov, A. Nano Surfactan: A Novel Nanoparticle-Based EOR Aproach. In Proceedings of the SPE Europec Featured at 80th EAEG Conference and Exhibition, Copenhagen, Denmark, 11–14 June 2018. SPE-190861-MS. [Google Scholar]
- Wilk, K.; Kasza, P.; Czupski, M. Zastosowanie nanocieczy jako dodatków wspomagających proces wypierania ropy naftowej. Nafta-Gaz 2014, 1, 14–20. [Google Scholar]
- Wilk, K.; Kasza, P.; Labus, K. Impact of Nitrogen Foamed Stimulation Fluids Stabilized by Nanoadditives on Reservoir Rocks of Hydrocarbon Deposits. Nanomaterials 2019, 9, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Han, M.; Fuseni, A.B.; Cao, D. Surfactant Adsorption in Surfactant-Polymer Flooding for Carbonate Reservoirs. In Proceedings of the SPE Middle East Oil & Gas Show and Conference, Manama, Bahrain, 8–11 March 2015. SPE-172700-MS. [Google Scholar]
- Ghosh, P.; Sharma, H.; Mohanty, K.K. Development of Surfactan-Polymer SP Processes for High Temperature and High Salinity Carbonate Reservoirs. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 24–26 September 2018. SPE-191733-MS. [Google Scholar]
- Al-Rudani, A.; Geiger, S.; Mackay, E.; Maier, C.; Jackson, P. Evaluation and Optimisation oe Chemically Enchanced Oil Recovery in Fractured Reservoirs Using Dual-Porosity Models. In Proceedings of the SPE Europec Featured at 81st EAGE Conference and Exhibition, London, UK, 3–6 June 2019. SPE-195448-MS. [Google Scholar]
- Dernaika, M.; Masalmeh, S.; Mansour, B.; Al Jalland, O.; Koronfol, S. Geology-Besed Porosity-Permeability Cerrelations in Carbonate Rock Types. In Proceedings of the SPE Reservoir Characterization and Simulation Conference and Exhibition, Abu Dhabi, UAE, 17–19 September 2019. SPE-196665-MS. [Google Scholar]
- Khorsandi, S.; Qiao, C.; Johns, R.T. Displacement Efficiency for Low-Salinity Polymer Flooding Including Wettability Alternation. SPE J. 2017, 22, 417–430, SPE-179695-PA. [Google Scholar] [CrossRef]
- Haroun, M.; Rahman, M.M.; Li, Y.; Jiang, C.; Ghedan, S.; De Bakker, J.; Wu, Y. Maximazing Oil Recovery Through Hybrid Smartwater Surface Active Polymer: A Novel Environomic EOR Technology. In Proceedings of the SPE Oil & Gas Technology Showcase and Conference, Dubai, UAE, 21–23 October 2019. SPE-198557-MS. [Google Scholar]
- Gerlach, B.; Dugonjic-Bilic, F.; Neuber, M.; Alkouh, A. Best Surfactant for EOR Polymer Injectivity. In Proceedings of the SPE Kuwait Oil and Gas Show and Conference, Mishref, Kuwait, 13–16 October 2019. SPE-198097-MS. [Google Scholar]
- Sharma, H.; Panthi, K.; Ghosh, P.; Weerasooriya, U.; Mohanty, K. Novel Surfactans without Hydrocarbon Chains for Chemical EOR. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 14–18 April 2018. SPE-190232-MS. [Google Scholar]
- Vijapurapu, C.S.; Rao, D.N.; Lian, K. The Effect of Rock Surface Characteristics on Reservoir Wettability. In Proceedings of the SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, USA, 13–17 April 2002. SPE-75211. [Google Scholar]
- Gant, P.L.; Anderson, W.G. Core Cleaning for Restoration of Native Wettability. SPE Form. Eval. 1988, 3, 131–138, SPE-14875-PA. [Google Scholar] [CrossRef]
- International Standard ISO 13503-1. Part 1: Measurement of Viscous Properties of Completion Fluids. In Petroleum and Natural Gas Industries—Completion Fluids and Materials; International Organization for Standarization: Geneva, Switzerland, 2011. [Google Scholar]
- Cho, H.; Kar, T.; Firoozabadi, A. Effect of Interface Elasticity on Improved Oil Recovery in Carbonate Rock from Ultra Low Salinity and Ultra-Low Concentration Demulsifier. Fuel 2020, 270, 117504. [Google Scholar] [CrossRef]
Core Name | Formation | Dolomite Content (%) | Quartz Content (%) | UCS 1 (Psi) |
---|---|---|---|---|
Guelph Dolomite | Sylurian | 99.4 | 0.6 | 9000–12,000 |
Gas Type | C1–C6 (mol %) | C7–C12 (mol %) | H2 (mol %) | N2 (mol %) | CO2 (mol %) | H2S (mol %) |
---|---|---|---|---|---|---|
Separated from oil | 60.234 | 1.013 | 0.406 | 30.295 | 0.077 | 7.975 |
Sample Number | Density (g/cm3) | Viscosity (mPa⋅s) | Asphaltenes (%) | Resins (%) | Saturated Hydrocarbons (%) | Aromatic Hydrocarbons (%) |
---|---|---|---|---|---|---|
R206/09/17 | 0.841 | 82.1 | 0.21 | 4.86 | 42.10 | 5.93 |
Type of Oil | Temperature (°C) | Pressure (MPa) | Density (g/cm3) | GOR 1 (sm3/m3) | Oil Volume Factor (m3/m3) |
---|---|---|---|---|---|
Live | 120 | 38.0 | 0.726 | 166.8 | 1.56 |
Dead | 23.5 | 0.098 | 0.841 | 1.00 |
Density (g/cm3) | Basic Ions | |||
---|---|---|---|---|
Chloride | Bromide | Sodium | Calcium | |
(mg/L) | (mg/L) | (mg/L) | (mg/L) | |
1.214 1 | 213,493.14 | 1837.82 | 103,637.86 | 40,859.94 |
Core Number | Test No. | Helium Porosity (%) | Nitrogen Permeability (mD) | PV 1 (mL) | So 2 (%) | Sw 3 (%) |
---|---|---|---|---|---|---|
BT1A | 1 | 11.74 | 51.59 | 11.59 | 51.12 | 48.88 |
BT1B | 8.48 | 10.61 | ||||
BT2A | 2 | 12.56 | 113.00 | 10.92 | 54.01 | 45.99 |
BT2B | 10.64 | 11.05 | ||||
BT3A | 3 | 13.65 | 185.40 | 10.21 | 48.91 | 51.09 |
BT3B | 10.20 | 22.91 | ||||
BT4A | 4 | 12.98 | 116.40 | 11.90 | 59.66 | 40.34 |
BT4B | 11.62 | 57.58 |
Solution | Surface Tension 1 (mN/m) |
---|---|
Water | 72.66 |
1% D66 | 30.89 |
2% D66 | 29.98 |
3% D66 | 28.01 |
PV | Surface Tension 1 (mN/m) |
---|---|
0 | 29.17 |
0.75 | 37.97 |
1.5 | 50.55 |
2.25 | 57.08 |
3.0 | 58.06 |
3.75 | 57.72 |
4.5 | 57.44 |
5.0 | 56.69 |
Solution | Contact Angle θ 1 (°) |
---|---|
Water | 69.45 |
Crude oil | 12.86 |
1% D66 | 14.50 |
2% D66 | 8.65 |
3% D66 | 7.03 |
Test No. | Composition of Displacement Solution (%) | Final Recovery Factor (%) | Maximum Differential Pressure (kPa) | Final Differential Pressure (kPa) |
---|---|---|---|---|
1 | Diluted reservoir water | 40.1 | 1066 | 755 |
2 | Diluted reservoir water +0.3% TN16988 + 3% D66 | 62.3 | 658 | 416 |
3 | Diluted reservoir water +0.02% TN16988 + 3% D66 | 55.0 | 59 | 59 |
4 | Diluted reservoir water +0.05% TN16988 + 1% D66 | 77.5 | 295 | 295 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasza, P.; Czupski, M.; Wilk, K.; Masłowski, M.; Moska, R.; Leśniak, Ł. Laboratory Testing of Novel Polyfraction Nanoemulsion for EOR Processes in Carbonate Formations. Energies 2020, 13, 4175. https://doi.org/10.3390/en13164175
Kasza P, Czupski M, Wilk K, Masłowski M, Moska R, Leśniak Ł. Laboratory Testing of Novel Polyfraction Nanoemulsion for EOR Processes in Carbonate Formations. Energies. 2020; 13(16):4175. https://doi.org/10.3390/en13164175
Chicago/Turabian StyleKasza, Piotr, Marek Czupski, Klaudia Wilk, Mateusz Masłowski, Rafał Moska, and Łukasz Leśniak. 2020. "Laboratory Testing of Novel Polyfraction Nanoemulsion for EOR Processes in Carbonate Formations" Energies 13, no. 16: 4175. https://doi.org/10.3390/en13164175
APA StyleKasza, P., Czupski, M., Wilk, K., Masłowski, M., Moska, R., & Leśniak, Ł. (2020). Laboratory Testing of Novel Polyfraction Nanoemulsion for EOR Processes in Carbonate Formations. Energies, 13(16), 4175. https://doi.org/10.3390/en13164175