The Zr-Doped CaO CO2 Sorbent Fabricated by Wet High-Energy Milling
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anwar, M.N.; Fayyaz, A.; Sohail, N.F.; Khokhar, M.F.; Baqar, M.; Khan, W.D.; Rasool, K.; Rehan, M.; Nizami, A.S. CO2 capture and storage: A way forward for sustainable environment. J. Environ. Manag. 2018, 226, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Koytsoumpa, E.I.; Bergins, C.; Kakaras, E. The CO2 economy: Review of CO2 capture and reuse technologies. J. Supercrit. Fluids 2018, 132, 3–16. [Google Scholar] [CrossRef]
- Adams II, T.A.; Hoseinzade, L.; Madabhushi, P.B.; Okeke, I.J. Comparison of CO2 capture approaches for fossil-based power generation: Review and Meta-Study. Processes 2017, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Sifat, N.S.; Haseli, Y. A critical review of CO2 capture technologies and prospects for clean power generation. Energies 2019, 12, 4143. [Google Scholar] [CrossRef] [Green Version]
- Rackley, S.A. Carbon Capture and Storage, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2017; p. 698. [Google Scholar]
- Fennell, P.; Anthony, B. Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture, 1st ed.; Woodhead Publishing: Cambridge, UK, 2015; p. 466. [Google Scholar]
- Blamey, J.; Anthony, E.J.; Wang, J.; Fennell, P.S. The calcium looping cycle for large-scale CO2 capture. Prog. Energy Combust. 2010, 36, 260–279. [Google Scholar] [CrossRef]
- Antzara, A.; Heracleous, E.; Lemonidou, A.A. Improving the stability of synthetic CaO-based CO2 sorbents by structural promoters. Appl. Energy 2015, 156, 331–343. [Google Scholar] [CrossRef]
- Kierzkowska, A.M.; Poulikakos, L.V.; Broda, M.; Müller, C.R. Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a co-precipitation technique. Int. J. Greenh. Gas Control 2013, 15, 48–54. [Google Scholar] [CrossRef]
- Koirala, R.; Gunugunuri, K.R.; Pratsinis, S.E.; Smirniotis, P.G. Effect of zirconia doping on the structure and stability of CaO-based sorbents for CO2 capture during extended operating cycles. J. Phys. Chem. C 2011, 115, 24804–24812. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Peng, Y.; Su, W.; Sun, X.; Li, J. Investigation on a novel CaO-Y2O3 sorbent for efficient CO2 mitigation. Chem. Eng. J. 2014, 243, 297–304. [Google Scholar] [CrossRef]
- Wang, S.; Fan, S.; Fan, L.; Zhao, Y.; Ma, X. Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles. Environ. Sci. Technol. 2015, 49, 5021–5027. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.K.; Quillin, S.; Smirniotis, P. Influence of the synthesis method on the structure and CO2 adsorption properties of Ca/Zr sorbents. Energy Fuels 2014, 28, 3292–3299. [Google Scholar] [CrossRef]
- Broda, M.; Müller, C.R. Sol–gel-derived, CaO-based, ZrO2-stabilized CO2 sorbents. Fuel 2014, 127, 94–100. [Google Scholar] [CrossRef]
- Abdulsamee, N.; Elkhadem, A.H. Zirconomer and zirconomer improved (white amalgams): Restorative materials for the future. Rev. EC Dent. Sci. 2017, 15, 134–150. [Google Scholar]
- Zhigachev, A.O.; Umrikhin, A.V.; Golovin, Y.I.; Farber, B.Y. Preparation of nanocrystalline calcia-stabilized tetragonal zirconia by high-energy milling of baddeleyite. Int. J. Appl. Ceram. Technol. 2015, 12, E82–E89. [Google Scholar] [CrossRef]
- Benitez-Guerrero, M.; Valverde, J.M.; Perejon, A.; Sanchez-Jimenez, P.E.; Perez-Maqueda, L.A. Effect of milling mechanism on the CO2 capture performance of limestone in the calcium looping process. Chem. Eng. J. 2018, 346, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Sayyah, M.; Lu, Y.; Masel, R.I.; Suslick, K.S. Mechanical activation of CaO-based adsorbents for CO2 Capture. ChemSusChem 2013, 6, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Radfarnia, H.R.; Iliuta, M.C. Development of zirconium-stabilized calcium oxide absorbent for cyclic high-temperature CO2 capture. Ind. Eng. Chem. Res. 2012, 51, 10390–10398. [Google Scholar] [CrossRef]
- Wang, Q. Pre-Combustion Carbon Dioxide Capture Materials; Royal Society of Chemistry: London, UK, 2018; p. 352. [Google Scholar]
Sorbent | Before the 1st Cycle | After the 50th Cycle | ||
---|---|---|---|---|
SBET, m2/g | Vsp, cm3/g | SBET, m2/g | Vsp, cm3/g | |
pure CaO | 15.9 | 0.123 | 2.6 | 0.025 |
Zr-doped CaO | 21.1 | 0.149 | 20.5 | 0.136 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodaev, V.V.; Razlivalova, S.S. The Zr-Doped CaO CO2 Sorbent Fabricated by Wet High-Energy Milling. Energies 2020, 13, 4110. https://doi.org/10.3390/en13164110
Rodaev VV, Razlivalova SS. The Zr-Doped CaO CO2 Sorbent Fabricated by Wet High-Energy Milling. Energies. 2020; 13(16):4110. https://doi.org/10.3390/en13164110
Chicago/Turabian StyleRodaev, Vyacheslav V., and Svetlana S. Razlivalova. 2020. "The Zr-Doped CaO CO2 Sorbent Fabricated by Wet High-Energy Milling" Energies 13, no. 16: 4110. https://doi.org/10.3390/en13164110