Effects of Modified Anodes on the Performance and Microbial Community of Microbial Fuel Cells Using Swine Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrode Pretreatment
2.2. Construction and Operation
2.3. Analysis
3. Results and Discussion
3.1. Characterizations of Anodes
3.1.1. SEM Analysis
3.1.2. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis
3.1.3. Contact Angle Analysis
3.2. MFC Performance
3.3. Microbial Community Diversity
3.4. Microbial Community Structure
4. Conclusions
5. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Corbella, C.; Hartl, M.; Fernandez-Gatell, M. MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands. Sci. Total Environ. 2019, 660, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Mei, X.; Xing, D.; Yang, Y. Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature. Bioelectrochemistry 2017, 117, 29–33. [Google Scholar] [CrossRef]
- Ni, H.J.; Zhuo, L.; Wang, X.X. Research progress of anode material for microbial fuel cell. Chin. J. Power Sources 2019, 43, 528–531. [Google Scholar]
- Ni, H.J.; Wang, K.X.; Lv, S.S. Effects of Concentration Variations on the Performance and Microbial Community in Microbial Fuel Cell Using Swine Wastewater. Energies 2020, 13, 2231. [Google Scholar] [CrossRef]
- Ulusoy, I.; Dimoglo, A. Electricity generation in microbial fuel cell systems with Thiobacillus ferrooxidans as the cathode microorganism. Int. J. Hydrogen Energy 2018, 43, 1171–1178. [Google Scholar] [CrossRef]
- Pan, Y.; Zhu, T.; He, Z. Energy advantage of anode electrode rotation over anolyte recirculation for operating a tubular microbial fuel cell. Electrochem. Commun. 2019, 106, 106529. [Google Scholar] [CrossRef]
- Neethu, B.; Pradhan, H.; Sarkar, P. Application of ion exchange membranes in enhancing algal production alongside desalination of saline water in microbial fuel cell. MRS Adv. 2019, 4, 1077–1085. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B. Microbial fuel cells: From fundamentals to applications. Rev. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef]
- Nandy, A.; Sharma, M.; Venkatesan, S.V. Comparative Evaluation of Coated and Non-Coated Carbon Electrodes in a Microbial Fuel Cell for Treatment of Municipal Sludge. Energies 2019, 12, 1034. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.P.; Wang, J.; Zhang, T.P. Phylogenetic Diversity of Bacterial and Archaeal Communities in Anode biofilm of Sediment Microbial Fuel Cells. Acta Sci. Circumstantiae 2016, 36, 4017–4024. [Google Scholar]
- Yang, Y.; Choi, C.; Xie, G. Electron transfer interpretation of the biofilm-coated anode of a microbial fuel cell and the cathode modification effects on its power. Bioelectrochemistry 2019, 127, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Long, X.Z.; Wang, H.; Wang, C.Q. Enhancement of azo dye degradation and power generation in a photoelectrocatalytic microbial fuel cell by simple cathodic reduction on titania nanotube arrays electrode. J. Power Sources 2019, 415, 145–153. [Google Scholar] [CrossRef]
- Hernandez, L.A.; Riveros, G.; Gonzalez, D.M. PEDOT/graphene/nickel-nanoparticles composites as electrodes for microbial fuel cells. J. Mater. Sci. 2019, 30, 12001–12011. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, Y.Y.; Wang, X.X. Research Progress of Active Components of the Eletrocatalysts for Direct Enthanol Fuel Cell. Nantong Univ. 2017, 16, 58–63. [Google Scholar]
- Wang, G.C.; Yu, M.S.; Xie, K.W. Graphene modified polyacrylonitrile fiber as high-performance cathode for marine sediment microbial fuel cells. J. Power Sources 2019, 438, 227002. [Google Scholar] [CrossRef]
- Liu, L.; Chou, T.Y.; Lee, C.Y. Performance of freshwater sediment microbial fuel cells: Consistency. Int. J. Hydrogen Energy 2016, 41, 4504–4508. [Google Scholar] [CrossRef]
- Xie, G.; Choi, C. High performance Microbial Fuel Cell Using Metal Ion Complexes as Electron Acceptors. Bull. Korean Chem. Soc. 2020, 41, 348–357. [Google Scholar] [CrossRef]
- Ma, J.; Ni, H.J.; Su, D.Y. Bioelectricity generation from pig farm wastewater in microbial fuel cell using carbon brush as electrode. Int. J. Hydrogen Energy 2016, 41, 16191–16195. [Google Scholar] [CrossRef]
- Liu, D.; Chang, Q.; Gao, Y. High performance of microbial fuel cell afforded by metallic tungsten carbide decorated carbon cloth anode. Electrochim. Acta 2019, 330, 135243. [Google Scholar] [CrossRef]
- Rossi, R.; Evans, P.J.; Logan, B.E. Impact of flow recirculation and anode dimensions on performance of a large scale microbial fuel cell. J. Power Sources 2019, 412, 294–300. [Google Scholar] [CrossRef]
- Schilirò, T.; Tommasi, T.; Armato, C. The study of electrochemically active planktonic microbes in microbial fuel cells in relation to different carbon-based anode materials. Energy 2016, 106, 277–284. [Google Scholar] [CrossRef]
- Catal, T.; Kul, A.; Atalay, V.E. Efficacy of microbial fuel cells for sensing of cocaine metabolites in urinebased wastewater. J. Power Sources 2019, 414, 1–7. [Google Scholar] [CrossRef]
- Włodarczyk, P.P.; Włodarczyk, B. Microbial Fuel Cell with Ni–Co Cathode Powered with Yeast Wastewater. Energies 2018, 11, 3194. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Lin, M.; Zhuang, Z. Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell. Chemosphere 2019, 232, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Jeong, J.; Gupta, P.L. Effects of brush-anode configurations on performance and electrochemistry of microbial fuel cells. Int. J. Hydrogen Energy 2017, 42, 27693–27700. [Google Scholar] [CrossRef]
- Alipanahi, R.; Rahimnejad, M.; Najafpour, G. Improvement of sediment microbial fuel cell performances by design and application of power management systems. Int. J. Hydrogen Energy 2019, 44, 16965–16975. [Google Scholar] [CrossRef]
- Ma, D.; Jiang, Z.H.; Lay, C.H. Electricity generation from swine wastewater in microbial fuel cell: Hydraulic reaction time effect. Int. J. Hydrogen Energy 2016, 41, 21820–21826. [Google Scholar] [CrossRef]
- López Zavala, M.Á.; González Peña, O.I. Use of Cyclic Voltammetry to Describe the Electrochemical Behavior of a Dual-Chamber Microbial Fuel Cell. Energies 2019, 12, 3532. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Feng, H.; Shen, D. High-performance microbial fuel cell anodes obtained from sewage sludge mixed with fly ash. J. Hazard. Mater. 2018, 354, 27–32. [Google Scholar] [CrossRef]
- Tremouli, A.; Karydogiannis, I.; Pandis, P.K. Bioelectricity production from fermentable household waste extract using a single chamber microbial fuel cell. Energy Procedia 2019, 161, 2–9. [Google Scholar] [CrossRef]
- Guo, J.; Cheng, J.; Li, B. Performance and microbial community in the biocathode of microbial fuel cells under different dissolved oxygen concentrations. J. Electroanal. Chem. 2019, 833, 433–440. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, L.; Hu, Y. Bacterial community shift and incurred performance in response to in situ microbial self-assembly graphene and polarity reversion in microbial fuel cell. Bioresour. Technol. 2017, 241, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, M.; Tian, X. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol. Adv. 2018, 36, 1316–1327. [Google Scholar] [CrossRef] [PubMed]
- Sekrecka-Belniak, A.; Toczyłowska-Mamińska, R. Fungi-Based Microbial Fuel Cells. Energies 2018, 11, 2827. [Google Scholar] [CrossRef] [Green Version]
Sample | Reads | OTU | Chao | Heip | Shannon | Coverage |
---|---|---|---|---|---|---|
CC | 26,270 | 509 | 543 (527, 574) | 0.1852 | 4.56 (4.54, 4.58) | 0.9977 |
N_CC | 31,232 | 552 | 565 (557, 585) | 0.1189 | 4.83 (4.81, 4.85) | 0.9989 |
N_H_CC | 33,164 | 425 | 475 (452, 517) | 0.0856 | 3.63 (3.61, 3.65) | 0.9980 |
F_CC | 34,536 | 412 | 491 (458, 550) | 0.2251 | 3.91 (3.9, 3.93) | 0.9975 |
Phylum or Class | Genus | Abundance (%) | |||
---|---|---|---|---|---|
CC | N_CC | N_H_CC | F_CC | ||
Alphaproteobacteria | Sphingopyxis | 1.82 | 2.16 | 0.4 | 0.81 |
Unclassified-f-Sphingomonadaceae | 0.37 | 2.18 | 3.6 | 0.9 | |
Novosphingobium | 0.89 | 1.63 | 2.34 | 0.98 | |
Unclassified-f-Caulobacteraceae | 0.99 | 1.94 | 0.24 | 0.68 | |
Phenylobacterium | 0.24 | 1.68 | 0.28 | 0.87 | |
Sphingobium | 0.09 | 1.60 | 0.74 | 0.63 | |
Brevundimonas | 0.95 | 1.14 | 0.58 | 0.74 | |
Betaproteobacteria | Comamonas | 4.89 | 11.96 | 6.91 | 5.35 |
Aquabacterium | 3.44 | 1.26 | 1.75 | 1.42 | |
Adevenella | 2.73 | 11.04 | 27.63 | 6.26 | |
Hydrogenophaga | 2.59 | 10.34 | 11.62 | 4.2 | |
Castellaniella | 2.05 | 1.69 | 0.28 | 2.56 | |
Methylophilus | 1.09 | 0 | 0 | 0.13 | |
Unclassified-f-Comamonadaceae | 1.46 | 2.27 | 1.22 | 1.58 | |
Thauera | 0.95 | 7.76 | 3.98 | 6.17 | |
Azoarcus | 0.6 | 6.70 | 2.96 | 2.09 | |
Azovibrio | 0.29 | 0.24 | 1.41 | 0.12 | |
Norank-f-Alcaligenaceae | 0.17 | 3.34 | 1.08 | 0.97 | |
Simplicispira | 0.18 | 0.23 | 1.06 | 0.24 | |
Unclassified-f-Alcaligenaceae | 0.02 | 1.39 | 0 | 0.23 | |
Gammaproteobacteria | Methylomonas | 10.52 | 1.51 | 0 | 1.87 |
Stenotrophomonas | 7.94 | 4.24 | 3.52 | 4.76 | |
Thermomonas | 4.57 | 8.36 | 1.78 | 6.73 | |
Acinetobacter | 1.17 | 0.26 | 0 | 0.3 | |
Pseudomonas | 0.5 | 0.22 | 0.16 | 1.69 | |
Deltaproteobacteria | Desulfomicrobium | 2.01 | 0.48 | 3.38 | 3.42 |
Desulfobulbus | 0.44 | 1.10 | 1.9 | 0.63 | |
Epsilonproteobacteria | Arcobacter | 9.15 | 0.64 | 0.53 | 4.3 |
Bacteroidetes | vadinBC27-wastewater-sludge-group | 2.31 | 0 | 0.44 | 2.13 |
Norank-c-Bacteroidetes-vadinHA17 | 1.5 | 0.12 | 0.1 | 1.75 | |
Flavobacterium | 1.44 | 0.12 | 0 | 0.99 | |
Firmicutes | Clostridium-sensu-stricto-1 | 1.14 | 0.48 | 3.76 | 2.45 |
Erysipelothrix | 0.5 | 0.27 | 0.75 | 1.15 | |
Terrisporobacter | 0.55 | 0.39 | 1.9 | 1.1 | |
Synergistetes | Norank-f-Synergistaceae | 1.56 | 0.18 | 0.23 | 1.56 |
P-WS6 | Norank-p-WS6 | 0.92 | 0.56 | 1.16 | 0.83 |
others | 27.98 | 10.31 | 12.06 | 27.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, H.; Wang, K.; Lv, S.; Wang, X.; Zhang, J.; Zhuo, L.; Li, F. Effects of Modified Anodes on the Performance and Microbial Community of Microbial Fuel Cells Using Swine Wastewater. Energies 2020, 13, 3980. https://doi.org/10.3390/en13153980
Ni H, Wang K, Lv S, Wang X, Zhang J, Zhuo L, Li F. Effects of Modified Anodes on the Performance and Microbial Community of Microbial Fuel Cells Using Swine Wastewater. Energies. 2020; 13(15):3980. https://doi.org/10.3390/en13153980
Chicago/Turabian StyleNi, Hongjun, Kaixuan Wang, Shuaishuai Lv, Xingxing Wang, Jiaqiao Zhang, Lu Zhuo, and Fei Li. 2020. "Effects of Modified Anodes on the Performance and Microbial Community of Microbial Fuel Cells Using Swine Wastewater" Energies 13, no. 15: 3980. https://doi.org/10.3390/en13153980
APA StyleNi, H., Wang, K., Lv, S., Wang, X., Zhang, J., Zhuo, L., & Li, F. (2020). Effects of Modified Anodes on the Performance and Microbial Community of Microbial Fuel Cells Using Swine Wastewater. Energies, 13(15), 3980. https://doi.org/10.3390/en13153980