Study of a Hybrid Solar Absorption-Cooling and Flash-Desalination System
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Description
2.2. Methods
- Aspen Plus was used to evaluate the internal operation of the absorption-cooling and flash-desalination system.
- Through the TRNSYS software, the thermal load and capacity of the solar thermal collector and TEST system were determined.
- MATLAB was used to evaluate the coupling of the solar thermal collector, TEST, and thermal load with the proposed hybrid system.
- The proposed cycle operates in stable conditions. The LiBr/H2O solution is homogeneous and in balance. The weak solution is at 51%.
- The steam (22) generated in sudden evaporation must be equal to the steam (7) produced in the GEN.
- Operating pressures were set as reported in [29], unless otherwise mentioned.
- The maximum operating cooling capacity was set at 80 kW, and a minimum partial load operation of 20% (16 kW).
- The minimum operating temperature of the hybrid system is 78 °C; a lower temperature will force the use of the auxiliary heater.
- The on/off switching of the solar field pump was controlled by temperature difference ().
- 30-min simulation intervals.
2.3. System Simulator Validation
2.4. Case Study
2.5. System Evaluation
3. Results
3.1. Analysis in Summer Period
3.2. Weekly Operation
3.3. Technological Considerations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GEN | Generator |
ABS | Absorber |
CON | Condenser |
EVA | Evaporator |
HX1 | Recovery heat exchanger |
HX2 | Driving fluid cooler |
AUX | Auxiliary heat exchanger |
TEST | Thermal energy storage tank |
SFP | Solar fluid pump |
HWP | Hot water pump |
SP | Solution pump |
SWP | Seawater pump |
SWP1 | Seawater pump for cooling |
EP | Ejector pump |
SV | Solution valve |
RV | Refrigeration valve |
SWV | Seawater expansion valve |
DIV | Streams divisor |
SEP | Separator equipment |
EJE | Ejector |
BC1 | Ejector barometric column |
BC2 | Separator barometric column |
PWT | Product water tank |
BRC | Brine container |
COP | Coefficient of operation |
PR | Performance ratio |
PW | Product water |
Nomenclature | |
T | Temperature [°C] |
P | Pressure [kPa] |
Q | Heat transfer [kW] |
ASC | Solar collection area |
GT | Incident solar radiation in the collector opening area |
a0 | Optical efficiency of the solar collector |
a1 | First order efficiency coefficient |
a2 | Second order efficiency coefficient |
Tin | Collector inlet temperature |
Ta | Ambient temperature |
f | Solar fraction |
Ef | Thermal efficiency of solar collectors |
Subscripts | |
a | Ambient |
in | Inlet |
1,2,3… | Number of streams |
sf | Solar field |
References
- EIA Annual Energy Outlook 2020 with Projections to 2050; Energy Information Administration: Washington, DC, USA, 2020.
- Chowdhury, T.; Mokheimer, E.M.A. Recent developments in solar and low-temperature heat sources assisted power and cooling systems: A design perspective. J. Energy Resour. Technol. 2020, 142, 040801. [Google Scholar] [CrossRef]
- Nassrullah, H.; Anis, S.F.; Hashaikeh, R.; Hilal, N. Energy for desalination: A state-of-the-art review. Desalination 2020, 491. [Google Scholar] [CrossRef]
- Castro, M.; Alcanzare, M.; Esparcia, E.; Ocon, J. A Comparative Techno-Economic Analysis of Different Desalination Technologies in Off-Grid Islands. Energies 2020, 13, 2261. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Azinheira, G.; Segurado, R.; Costa, M. Is renewable energy-powered desalination a viable solution for water stressed regions? A case study in Algarve, Portugal. Energies 2019, 12, 4651. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.; Nashed, A.; Li, Q.; Leslie, G.; Taylor, R.A. Pathways for integrated concentrated solar power - Desalination: A critical review. Renew. Sustain. Energy Rev. 2020, 119, 109609. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Kazmerski, L.L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Mito, M.T.; Ma, X.; Albuflasa, H.; Davies, P.A. Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation. Renew. Sustain. Energy Rev. 2019, 112, 669–685. [Google Scholar] [CrossRef]
- Ghaffour, N.; Bundschuh, J.; Mahmoudi, H.; Goosen, M.F.A. Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination 2015, 356, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Saikia, K.; Vallès, M.; Fabregat, A.; Saez, R.; Boer, D. A bibliometric analysis of trends in solar cooling technology. Sol. Energy 2020, 199, 100–114. [Google Scholar] [CrossRef]
- Mohammadi, K.; Saghafifar, M.; Ellingwood, K.; Powell, K. Hybrid concentrated solar power (CSP)-desalination systems: A review. Desalination 2019, 468, 114083. [Google Scholar] [CrossRef]
- Inayat, A.; Raza, M. District cooling system via renewable energy sources: A review. Renew. Sustain. Energy Rev. 2019, 107, 360–373. [Google Scholar] [CrossRef]
- Chandrashekara, M.; Yadav, A. Water desalination system using solar heat: A review. Renew. Sustain. Energy Rev. 2017, 67, 1308–1330. [Google Scholar] [CrossRef]
- Ullah, I.; Rasul, M.G. Recent developments in solar thermal desalination technologies: A review. Energies 2019, 12, 119. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.E.; Hashaikeh, R.; Hilal, N. Solar powered desalination—Technology, energy and future outlook. Desalination 2019, 453, 54–76. [Google Scholar] [CrossRef]
- Aguilar-Jiménez, J.A.; Velázquez, N.; López-Zavala, R.; González-Uribe, L.A.; Beltrán, R.; Hernández-Callejo, L. Simulation of a Solar-Assisted Air-Conditioning System Applied to a Remote School. Appl. Sci. 2019, 9, 3398. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Jiménez, J.A.; Velázquez-Limón, N.; López-Zavala, R.; González-Uribe, L.A.; Islas, S.; González, E.; Ramírez, L.; Beltrán, R. Optimum operational strategies for a solar absorption cooling system in an isolated school of Mexico. Int. J. Refrig. 2020, 112, 1–13. [Google Scholar] [CrossRef]
- Byrne, P.; Fournaison, L.; Delahaye, A.; Ait Oumeziane, Y.; Serres, L.; Loulergue, P.; Szymczyk, A.; Mugnier, D.; Malaval, J.L.; Bourdais, R.; et al. A review on the coupling of cooling, desalination and solar photovoltaic systems. Renew. Sustain. Energy Rev. 2015, 47, 703–717. [Google Scholar] [CrossRef]
- Anand, B.; Murugavelh, S. Performance analysis of a novel augmented desalination and cooling system using modified vapor compression refrigeration integrated with humidification-dehumidification desalination. J. Clean. Prod. 2020, 255, 120224. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Zubair, S.M.; Abdallah, A.M.; Elbassoussi, M.H.; Ahmed, M.A. Novel and efficient integration of a humidification-dehumidification desalination system with an absorption refrigeration system. Appl. Energy 2020, 263. [Google Scholar] [CrossRef]
- Kerme, E.D.; Orfi, J.; Fung, A.S.; Salilih, E.M.; Khan, S.U.D.; Alshehri, H.; Ali, E.; Alrasheed, M. Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system. Energy 2020, 196. [Google Scholar] [CrossRef]
- Sahoo, U.; Kumar, R.; Pant, P.C.; Chaudhury, R. Scope and sustainability of hybrid solar–biomass power plant with cooling, desalination in polygeneration process in India. Renew. Sustain. Energy Rev. 2015, 51, 304–316. [Google Scholar] [CrossRef]
- Alelyani, S.M.; Fette, N.W.; Stechel, E.B.; Doron, P.; Phelan, P.E. Techno-economic analysis of combined ammonia-water absorption refrigeration and desalination. Energy Convers. Manag. 2017, 143, 493–504. [Google Scholar] [CrossRef]
- Mohammadi, K.; McGowan, J.G. An efficient integrated trigeneration system for the production of dual temperature cooling and fresh water: Thermoeconomic analysis and optimization. Appl. Therm. Eng. 2018, 145, 652–666. [Google Scholar] [CrossRef]
- Calise, F.; Dentice d’Accadia, M.; Piacentino, A.; Vicidomini, M. Thermoeconomic optimization of a renewable polygeneration system serving a small isolated community. Energies 2015, 8, 995–1024. [Google Scholar] [CrossRef] [Green Version]
- Calise, F.; Macaluso, A.; Piacentino, A.; Vanoli, L. A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island. Energy 2017, 137, 1086–1106. [Google Scholar] [CrossRef]
- Jabari, F.; Nazari-heris, M.; Mohammadi-ivatloo, B.; Asadi, S.; Abapour, M. A solar dish Stirling engine combined humidification-dehumidification desalination cycle for cleaner production of cool, pure water, and power in hot and humid regions. Sustain. Energy Technol. Assessments 2020, 37, 100642. [Google Scholar] [CrossRef]
- López-Zavala, R.; Velázquez-Limón, N.; González-Uribe, L.A.; Aguilar-Jiménez, J.A.; Alvarez-Mancilla, J.; Acuña, A.; Islas, S. A novel LiBr/H2O absorption cooling and desalination system with three pressure levels. Int. J. Refrig. 2019, 99, 469–478. [Google Scholar] [CrossRef]
- López-Zavala, R.; Velázquez, N.; González-Uribe, L.A.; Quezada-Espinoza, K.M.; Aguilar-Jiménez, J.A.; Islas, S.; Nakasima-López, M.; González, E. Absorption cooling and desalination system with a novel internal energetic and mass integration that increases capacity and efficiency. Desalination 2019, 417, 114144. [Google Scholar] [CrossRef]
- AHRI Standard 560–2000 for Absorption water Chilling and Water Heating Packages; Air-Conditioning, Heating, and Refrigeration Institute: Arlington, TX, USA, 2000.
- Mejía Mercado, B.E.; Hinojosa Corona, A.; Hendrickx, M.E. Explorando el Mar Profundo del Golfo de California 2008–2014; CICESE: Ensenada, Mexico, 2014; ISBN 978-607-95688-1-8. [Google Scholar]
- Zheng, H. Chapter 1—General Problems in Seawater Desalination. In Solar Energy Desalination Technology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–46. ISBN 9780128054116. [Google Scholar]
- Florides, G.A.; Kalogirou, S.A.; Tassou, S.A.; Wrobel, L.C. Design and construction of a LiBr-water absorption machine. Energy Convers. Manag. 2003, 44, 2483–2508. [Google Scholar] [CrossRef]
- Kahraman, N.; Cengel, Y.A. Exergy analysis of a MSF distillation plant. Energy Convers. Manag. 2005, 46, 2625–2636. [Google Scholar] [CrossRef]
- Palenzuela, P.; Hassan, A.S.; Zaragoza, G.; Alarcón-Padilla, D.C. Steady state model for multi-effect distillation case study: Plataforma Solar de Almería MED pilot plant. Desalination 2014, 337, 31–42. [Google Scholar] [CrossRef]
- Zheng, H. Chapter 7—Solar Desalination System Combined with Conventional Technologies. In Solar Energy Desalination Technology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 537–622. ISBN 978-0-12-805411-6. [Google Scholar]
- Bartram, J.; Howard, G. Domestic Water Quantity, Service Level and Health; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Becken, S. Water equity—Contrasting tourism water use with that of the local community. Water Resour. Ind. 2014, 7–8, 9–22. [Google Scholar] [CrossRef] [Green Version]
Hybrid Cooling-Absorption and Flash-Desalination System | |
---|---|
Max. cooling capacity | 80 kW |
Min. cooling capacity | 16 kW |
Mass flow activation m11 | 5.62 kg/s |
Temp. of seawater (stream 13) | 27 °C |
Mass flow of seawater (stream 13) | 3.39 kg/s |
Evaporator temp. | 6 °C |
Condenser temp. | 34.30 °C |
Absorber temp. (stream 1) | 32 °C |
Inlet chiller temp. | 12 °C |
Flow solution | 0.28 kg/s |
Solar Collector | |
Brand/model | Suntask/SHC24 |
Collector type | Evacuated tube with CPC reflector |
Number of tubes | 24 |
Aperture area | 4.41 m2 |
Optical efficiency (a0) | 0.668 |
First order efficiency coefficient (a1) | 1.496 W/m2 °C |
Second order efficiency coefficient (a2) | 0.005 W/m2 °C2 |
Fluid | Water |
Mass flow | 0.02 kg/s m2 |
Thermal Energy Storage Tank | |
Material | Fiberglass |
Insulation thickness | 0.025 m |
Loss coefficient | 1.4 W/m2 K |
Fluid | Water |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velázquez-Limón, N.; López-Zavala, R.; Hernández-Callejo, L.; Aguilar-Jiménez, J.A.; Ojeda-Benítez, S.; Ríos-Arriola, J. Study of a Hybrid Solar Absorption-Cooling and Flash-Desalination System. Energies 2020, 13, 3943. https://doi.org/10.3390/en13153943
Velázquez-Limón N, López-Zavala R, Hernández-Callejo L, Aguilar-Jiménez JA, Ojeda-Benítez S, Ríos-Arriola J. Study of a Hybrid Solar Absorption-Cooling and Flash-Desalination System. Energies. 2020; 13(15):3943. https://doi.org/10.3390/en13153943
Chicago/Turabian StyleVelázquez-Limón, Nicolás, Ricardo López-Zavala, Luis Hernández-Callejo, Jesús A. Aguilar-Jiménez, Sara Ojeda-Benítez, and Juan Ríos-Arriola. 2020. "Study of a Hybrid Solar Absorption-Cooling and Flash-Desalination System" Energies 13, no. 15: 3943. https://doi.org/10.3390/en13153943
APA StyleVelázquez-Limón, N., López-Zavala, R., Hernández-Callejo, L., Aguilar-Jiménez, J. A., Ojeda-Benítez, S., & Ríos-Arriola, J. (2020). Study of a Hybrid Solar Absorption-Cooling and Flash-Desalination System. Energies, 13(15), 3943. https://doi.org/10.3390/en13153943