Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels
Abstract
:1. Introduction
- Reckon the exergy destruction costs of the entire engine and sections;
- Investigate the exergy, exergoeconomic and sustainability performance parameters for the military (MIL) and afterburner (AB) process modes (PM) for both kerosene and hydrogen fuel utilizations;
- Assign advanced exergoeconomic cost rates of the entire engine and sections by breaking them down to unavoidable/avoidable and exogenous/endogenous portions;
- Check the advanced exergoeconomic cost rates for both kerosene and hydrogen fuel utilizations;
- Reveal the sections that can be ameliorated by calculating economic benefit of amelioration potential (EBAP) for JP-8 and H2 fuels.
2. Methodology
2.1. Specification of TJE
- Compressor (AC)
- Combustion chamber (CC)
- Gas turbine mechanical shaft (GTMS)
- Gas turbine (GT)
- Forward exhaust duct (FED)
- Afterburner exhaust duct (ABED)
2.2. The Flow Process of the Analyses
2.3. Assumptions Made
- Calculations for air and burnout gases were considered with the ideal gas assumption.
- The TJE operated under constant conditions.
- The fully burned gases were gained upon the completion of the operation.
- Not only in kinetic exergy but also in potential exergy, no changes occur.
- The inlet velocity (Vin) was considered zero because of the constant test conditions.
- Kerosene and hydrogen are taken into account as fuels in this research.
2.4. Exergy Analysis
2.5. Conventional Exergoeconomic Analysis
2.6. Economic Data
2.7. Exergy and Exergoeconomic Performance Metrics
3. Advanced Exergy and Exergoeconomic Analyses
3.1. Advanced Exergy Analysis
3.2. Advanced Exergoeconomic Analysis
4. Results and Discussion
5. Conclusions
- The rates were calculated to be 745 and 2271 $/h for the MIL and AB PM with kerosene use, seriatim, while they were obtained as 2585 and 7885 $/h with H2 use.
- The rates with JP-8 were determined 515 $/h for the MIL PM and 1886 $/h for the AB PM. By considering the use of hydrogen, the for the MIL PM was 1845 $/h, whereas it was 6676 $/h for the AB PM.
- The rates were determined as 76.45 $/GJ and 94.97 $/GJ with kerosene use, seriatim, while they were computed as 179 $/GJ and 288 $/GJ with H2 use.
- The rates were reckoned to be 1405 $/h for the MIL PM and 2932 $/h for the AB PM. By considering the usage of hydrogen, the were 3245 $/h and 8545 $/h, seriatim.
- The EBAP values were computed to be 356 $/h and 1565 $/h for the MIL and AB PM with kerosene use, seriatim, while they were reckoned as 1317 $/h and 5652 $/h with H2 use.
- The ζ rates were computed as 56.20% and 25.95% for the MIL and AB PM with kerosene use, seriatim. By taking into account the use of H2, the ζ were 26.37% and 9.01%.
- The π rates were calculated to be 512% for the MIL PM and 660% for the AB PM. By considering the use of hydrogen, the π were 339% and 607%, seriatim.
- The SEF values were determined to be 1.45 and 1.20 for the MIL and AB PM with kerosene use, seriatim, while they were calculated 1.40 and 1.18 with H2 use.
- The SCI values were determined to be 52.86 and 78.87 $/GJ for the MIL and AB PM, seriatim, whereas they were reckoned 128 and 244 $/GJ with H2 use.
- The rates were calculated as 380 and 1127 $/h for MIL and AB PM with kerosene use, seriatim, while they were determined as 1298 and 4175 $/h with H2 use. Moreover, the rate had the highest for both fuel utilizations. Hence, the tract has low amelioration aptness.
- The and the rates were reckoned with values of 562 and 98.96 $/h, seriatim, for both fuel uses.
- The rates were computed as 596 and 564 $/h for MIL and AB PM with kerosene use, seriatim, while they were reckoned as 590 and 589 $/h with H2 use.
- The rates were calculated 65.08 and 96.87 $/h for MIL and AB PM with kerosene use, seriatim, while they were reckoned to be 70.64 and 71.42 $/h with H2 use.
- The rates were computed as 369 and 1098 $/h for MIL and AB PM with kerosene use, seriatim, whereas they were determined as 1362 and 4077 $/h with H2 use.
- The rates were computed to be 146 and 788 $/h for MIL and AB PM with kerosene use, seriatim, while they were determined as 483 and 2599 $/h with H2 use.
- As the rates were computed higher than the rates, the coactions between the sections were low.
- The rates were computed as 134 and 759 $/h for MIL and AB PM with kerosene use, seriatim, while they were determined as 447 and 2501 $/h with H2 use. Moreover, the had a smaller rate than the cost rate in the whole tract not only for kerosene use but also for H2 use.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
yearly capital cost rate ($/yr) | |
unit exergy flow cost ($/GJ) | |
specific heat capacity (kJ/(kg·K)) | |
exergy flow cost rate ($/h) | |
cost recovery factor (-) | |
energy rate (kW or GJ/h) | |
economic benefit of amelioration potential rate ($/h) | |
exergy rate (kW or GJ/h) | |
yearly fuel cost rate ($/yr) | |
fuel price ($/kg) | |
interest rate (%) | |
lower heating value of fuel (kJ/kg) | |
mass flow rate (kg/s) | |
lifetime (yr) | |
yearly operation and maintenance cost ($/yr) | |
pressure (kPa) | |
present value factor (-) | |
present value ($) | |
heat transfer rate (kW or GJ/h) | |
ratio of the purchase cost of the section to the investment cost (%) | |
sustainability cost index ($/GJ) | |
sustainability effect factor (-) | |
salvage value ($) | |
salvage value rate (%) | |
temperature (°C or K) | |
total investment cost ($) | |
velocity (m/s) | |
work rate or power (kW or GJ/h) | |
hourly investment cost rate ($/h) | |
Greek Letters | |
exergy (second law) yield (%) | |
yearly operation hour (h/yr) | |
relative cost difference (%) | |
exergoeconomic factor (%) | |
Subscripts | |
afterburner exhaust duct | |
air compressor | |
consumption | |
combustion chamber | |
destroyed, destruction | |
fuel | |
forward exhaust duct | |
gas turbine | |
gas turbine mechanic shaft | |
inlet | |
kinetic exergy | |
losses | |
n-th section | |
outlet | |
pressure | |
product | |
temperature | |
turbojet engine | |
reference state | |
location numbers of sections | |
Superscripts | |
avoidable | |
avoidable-endogenous | |
avoidable-exogenous | |
endogenous | |
exogenous | |
investment cost | |
operation and maintenance cost | |
real | |
unavoidable | |
unavoidable-endogenous | |
unavoidable-exogenous | |
total investment cost | |
Abbreviations | |
afterburner | |
air compressor | |
afterburner exhaust duct | |
combustion chamber | |
continuous flow continuous open | |
forward exhaust duct | |
gas turbine | |
gas turbine mechanic shaft | |
military | |
process mode | |
sustainability cost index | |
sustainable effect factor | |
section | |
specific exergy cost method | |
turbojet engine |
Appendix A
State No. | Fluid Type | ||||||
---|---|---|---|---|---|---|---|
0 | Air | 0.00 | 101 | 288 | 1.00375 | 0.00 | 0.00 |
1 | Air | 18.12 | 101 | 288 | 1.00375 | 0.00 | 0.00 |
2 | Air | 18.12 | 719 | 572 | 1.04401 | 5583 | 4700 |
2.1 | Air | 16.31 | 719 | 572 | 1.04401 | 5024 | 4230 |
2.2 | Air | 1.81 | 719 | 572 | 1.04401 | 558 | 470 |
2.3 | Air | 1.81 | 182 | 943 | 1.12946 | 1405 | 740 |
2.4 | Air | 1.81 | 179 | 932 | 1.12735 | 1380 | 720 |
2.5 | Air | 1.81 | 175 | 920 | 1.12477 | 1350 | 699 |
2.5 * | Air | 1.81 | 175 | 1,563 | 1.13501 | 2691 | 1714 |
3 | Military fuel | 0.36 | 245 | 298 | - | 15,593 | 16,554 |
4 | Combustion gas | 16.67 | 683 | 1177 | 1.23710 | 19,454 | 13,258 |
5 | Combustion gas | 16.67 | 182 | 943 | 1.18586 | 13,811 | 7156 |
6 | Combustion gas | 16.67 | 179 | 932 | 1.18345 | 13,568 | 6966 |
7 | Combustion gas | 16.67 | 175 | 920 | 1.18055 | 13,277 | 6746 |
7 * | Combustion gas | 17.41 | 175 | 1,563 | 1.38960 | 32,784 | 20,164 |
10 * | Afterburner fuel | 0.74 | 245 | 298 | - | 31,972 | 33,941 |
8 | Mechanical work | - | - | - | - | 5640 | 5640 |
9 | Mechanical work | - | - | - | - | 5583 | 5583 |
State No. | Fluid Type | ||||||
---|---|---|---|---|---|---|---|
0 | Air | 0.00 | 101 | 288 | 1.00375 | 0.00 | 0.00 |
1 | Air | 18.12 | 101 | 288 | 1.00375 | 0.00 | 0.00 |
2 | Air | 18.12 | 719 | 572 | 1.04401 | 5583 | 4700 |
2.1 | Air | 16.31 | 719 | 572 | 1.04401 | 5024 | 4230 |
2.2 | Air | 1.81 | 719 | 572 | 1.04401 | 558 | 470 |
2.3 | Air | 1.81 | 182 | 923 | 1.12550 | 1359 | 710 |
2.4 | Air | 1.81 | 179 | 912 | 1.12319 | 1332 | 690 |
2.5 | Air | 1.81 | 175 | 894 | 1.11934 | 1289 | 665 |
2.5 * | Air | 1.81 | 175 | 1532 | 1.14204 | 2647 | 1677 |
3 | Military fuel | 0.13 | 245 | 298 | - | 15,593 | 17,594 |
4 | Combustion gas | 16.44 | 683 | 1156 | 1.27884 | 19,550 | 13,349 |
5 | Combustion gas | 16.44 | 182 | 923 | 1.22356 | 13,813 | 7059 |
6 | Combustion gas | 16.44 | 179 | 912 | 1.22086 | 13,552 | 6857 |
7 | Combustion gas | 16.44 | 175 | 894 | 1.21645 | 13,125 | 6551 |
7 * | Combustion gas | 16.71 | 175 | 1532 | 1.38537 | 30,629 | 18,853 |
10 * | Afterburner fuel | 0.27 | 245 | 298 | - | 31,972 | 36,075 |
8 | Mechanical work | - | - | - | - | 5737 | 5737 |
9 | Mechanical work | - | - | - | - | 5583 | 5583 |
SEC. | |||||||||
---|---|---|---|---|---|---|---|---|---|
AC | 883 | 722 | 161 | 132 | 750 | 610 | 112 | 141 | 20.01 |
CC | 7525 | 7318 | 208 | 690 | 6835 | 6644 | 674 | 191 | 16.34 |
GT | 193 | 117 | 75.95 | 12.02 | 181 | 109 | 8.00 | 71.93 | 4.02 |
FED | 209 | 137 | 72.50 | 25.98 | 183 | 119 | 17.59 | 64.11 | 8.39 |
ABED | 241 | 134 | 107 | 33.06 | 208 | 115 | 19.42 | 93.71 | 13.64 |
GTMS | 57.13 | 31.15 | 25.98 | 3.90 | 53.23 | 28.89 | 2.26 | 24.34 | 1.64 |
TJE | 9109 | 8459 | 650 | 897 | 8212 | 7,626 | 833 | 586 | 64.04 |
SEC. | |||||||||
---|---|---|---|---|---|---|---|---|---|
AC | 883 | 722 | 161 | 132 | 750 | 610 | 112 | 141 | 20.01 |
CC | 7525 | 7318 | 208 | 690 | 6835 | 6644 | 674 | 191 | 16.34 |
GT | 193 | 117 | 75.95 | 12.02 | 181 | 109 | 8.00 | 71.93 | 4.02 |
FED | 209 | 137 | 72.50 | 25.98 | 183 | 119 | 17.59 | 64.11 | 8.39 |
ABED | 19,728 | 16,727 | 3001 | 3329 | 16,399 | 13,867 | 2859 | 2532 | 469 |
GTMS | 57.13 | 31.15 | 25.98 | 3.90 | 53.23 | 28.89 | 2.26 | 24.34 | 1.64 |
TJE | 28,595 | 25,052 | 3544 | 4193 | 24,403 | 21,378 | 3673 | 3024 | 520 |
SEC. | |||||||||
---|---|---|---|---|---|---|---|---|---|
AC | 883 | 722 | 161 | 120 | 763 | 621 | 101 | 142 | 18.66 |
CC | 8475 | 8174 | 300 | 861 | 7614 | 7349 | 826 | 265 | 35.24 |
GT | 313 | 212 | 101 | 49.74 | 263 | 174 | 38.40 | 89.87 | 11.34 |
FED | 223 | 140 | 82.43 | 21.69 | 201 | 125 | 15.67 | 76.41 | 6.02 |
ABED | 330 | 182 | 149 | 43.50 | 287 | 153 | 28.88 | 134 | 14.62 |
GTMS | 154 | 87.25 | 67.16 | 14.14 | 140 | 79.22 | 8.03 | 61.05 | 6.11 |
TJE | 10,378 | 9518 | 860 | 1110 | 9269 | 8500 | 1018 | 768 | 91.99 |
SEC. | |||||||||
---|---|---|---|---|---|---|---|---|---|
AC | 883 | 722 | 161 | 120 | 763 | 621 | 101 | 142 | 18.66 |
CC | 8475 | 8174 | 300 | 861 | 7614 | 7349 | 826 | 265 | 35.24 |
GT | 313 | 212 | 101 | 49.74 | 263 | 174 | 38.40 | 89.87 | 11.34 |
FED | 223 | 140 | 82.43 | 21.69 | 201 | 125 | 15.67 | 76.41 | 6.02 |
ABED | 23,066 | 19,083 | 3,982 | 4297 | 18,769 | 15,469 | 3614 | 3299 | 68 |
GTMS | 154 | 87.25 | 67.16 | 14.14 | 140 | 79.22 | 8.03 | 61.05 | 6.11 |
TJE | 33,113 | 28,419 | 4694 | 5363 | 27,750 | 23,816 | 4603 | 3934 | 760 |
References
- Atılgan, R.; Turan, O.; Altuntas, O.; Aydin, H.; Synylo, K. Environmental impact assessment of a turboprop engine with the aid of exergy. Energy 2013, 58, 664–671. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Boles, M.A. Thermodynamics: An Engineering Approach, 8th ed.; Mc Graw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Turgut, E.T. Exergoeconomic Analysis of Aircraft Gas Turbine Engines. Ph.D. Thesis, Anadolu University, Eskisehir, Turkey, 2007. [Google Scholar]
- Bejan, A.; Tsatsaronis, G.; Moran, M. Thermal Design and Optimization; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.N.; Lim, L.L.; Owena, B.; Sausen, R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydin, H.; Turan, O.; Karakoc, T.H.; Midilli, A. Exergetic sustainability indicators as a tool in commercial aircraft: A case study for a turbofan engine. Int. J. Green Energy 2015, 12, 28–40. [Google Scholar] [CrossRef]
- Schäfer, A.W.; Evans, A.D.; Reynolds, T.G.; Dray, L. Costs of mitigating CO2 emissions from passenger aircraft. Nat. Clim. Chang. 2016, 6, 412–417. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.J. Can we accelerate the improvement of energy efficiency in aircraft systems? Energy Convers. Manag. 2010, 51, 189–196. [Google Scholar] [CrossRef]
- Altuntas, O. Designation of environmental impacts and damages of turbojet engine: A case study with GE-J85. Atmosphere 2014, 5, 307–323. [Google Scholar] [CrossRef] [Green Version]
- Yuksel, B.; Balli, O.; Gunerhan, H.; Hepbasli, A.; Atalay, H. Exergetic and Environmental Analyses of Turbojet Engine. In Environmentally-Benign Energy Solutions; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Morsli, S.; Amina, S.; Ganaoui, M.E.; Ramenah, H. Computational simulation of entropy generation in a combustion chamber using a single burner. Entropy 2018, 20, 922. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency. World Energy Outlook; IEA: Paris, France, 2018. [Google Scholar]
- Cecere, D.; Giacomazzi, E.; Ingenito, A. A review on hydrogen industrial aerospace applications. Int. J. Hydrog. Energy 2014, 39, 10731–10747. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. A review on potential use of hydrogen in aviation applications. Int. J. Sustain. Aviat. 2016, 2, 74–100. [Google Scholar] [CrossRef]
- Balli, O.; Sohret, Y.; Karakoc, T.H. The effects of hydrogen fuel usage on the exergetic performance of a turbojet engine. Int. J. Hydrog. Energy 2018, 43, 10848–10858. [Google Scholar] [CrossRef]
- Stamatis, A.; Vinni, C.; Bakalis, D.; Tzorbatzoglou, F.; Tsiakaras, P. Exergy analysis of an intermediate temperature solid oxide fuel cell-gas turbine hybrid system fed with ethanol. Energies 2012, 5, 4268–4287. [Google Scholar] [CrossRef]
- Elitzur, S.; Rosenband, V.; Gany, A. On-board hydrogen production for auxiliary power in passenger aircraft. Int. J. Hydrog. Energy 2017, 42, 14003–14009. [Google Scholar] [CrossRef]
- Koroneos, C.J.; Dompros, A.; Roumbas, G.; Moussiopoulos, N. Advantages of the use of hydrogen fuel as compared to kerosene. Resour. Conserv. Recycl. 2005, 44, 99–113. [Google Scholar] [CrossRef]
- Nalbant, Y.; Colpan, C.O.; Devrim, Y. Energy and exergy performance assessments of a high temperature-proton exchange membrane fuel cell based integrated cogeneration system. Int. J. Hydrog. Energy 2020, 45, 3584–3594. [Google Scholar] [CrossRef]
- Mahmoudi, S.M.S.; Sarabchi, N.; Yari, M.; Rosen, M.A. Exergy and exergoeconomic analyses of a combined power producing system including a proton exchange membrane fuel cell and an organic rankine cycle. Sustainability 2019, 11, 3264. [Google Scholar] [CrossRef] [Green Version]
- Harsha, S. Liquid hydrogen as aviation fuel and its relative performance with commercial aircraft fuel. Int. J. Mech. Eng. Robot. Res. 2014, 1, 73–77. [Google Scholar]
- Alayi, R.; Nemati, R.; Shamel, A.; Kasaeian, A.; Sarkaleh, M.K.; Ahmadi, M.H. Energetic and exergetic analysis hybrid solid oxide fuel cell systems and gas turbine (SOFC-GT). Math. Model. Eng. Prob. 2019, 6, 263–270. [Google Scholar] [CrossRef]
- Khandelwal, B.; Karakurt, A.; Sekaran, P.R.; Sethi, V.; Singh, R. Hydrogen powered aircraft: The future of air transport. Prog. Aerosp. Sci. 2013, 60, 45–59. [Google Scholar] [CrossRef]
- Nanaki, E.A.; Koroneos, C.J. Exergetic aspects of hydrogen energy systems—The case study of a fuel cell bus. Sustainability 2017, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Bicer, Y.; Dincer, I. Life cycle evaluation of hydrogen and other potential fuels for aircrafts. Int. J. Hydrog. Energy 2017, 42, 10722–10738. [Google Scholar] [CrossRef]
- Gohardani, A.S.; Doulgeris, G.; Singh, R. Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft. Prog. Aerosp. Sci. 2011, 47, 369–391. [Google Scholar] [CrossRef]
- Westenberger, A. Hydrogen fuelled aircraft. AIAA International Air and Space Symposium and Exposition. In Proceedings of the Next 100 Years, AIAA 2003–2880, Dayton, OH, USA, 14–17 July 2003. [Google Scholar]
- Baroutaji, A.; Wilberforce, T.; Ramadan, M.; Olabi, A.G. Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors. Renew. Sustain. Energy Rev. 2019, 106, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Sarlioglu, B.; Morris, C.T. More electric aircraft: Review, challenges and opportunities for commercial transport aircraft. IEEE Trans. Transp. Electrif. 2015, 1, 54–64. [Google Scholar] [CrossRef]
- Blakey, S.; Rye, L.; Wilson, C.W. Aviation gas turbine alternative fuels: A review. Proc. Combust. Inst. 2011, 33, 2863–2885. [Google Scholar] [CrossRef]
- International Coordinating Council of Aerospace Industries Associations. Non-drop in fuels and advanced aircraft system power technologies. In Proceedings of the Conference on Aviation and Alternative Fuels, CAAF/09-IP/13, Rio de Janeiro, Brazil, 16–18 November 2009. [Google Scholar]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen storage for mobility: A Review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTM. ASTMD1655-18a, Standard Specification for Aviation Turbine Fuels; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- Naemi, S.; Avval, M.S.; Kalhori, S.B.; Mansoori, Z. Optimum design of dual pressure heat recovery steam generator using non-dimensional parameters based on thermodynamic and thermoeconomic approaches. Appl. Therm. Eng. 2013, 52, 371–384. [Google Scholar] [CrossRef]
- Lazzaretto, A.; Tsatsaronis, G. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy 2006, 31, 1257–1289. [Google Scholar] [CrossRef]
- Toffolo, A.; Lazzaretto, A. Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design. Energy 2002, 27, 549–567. [Google Scholar] [CrossRef]
- Balli, O. Thermodynamic, thermoeconomic and environmental performance analyses of a commercial aircraft’s high bypass turbofan engine. Sakarya Univ. J. Sci. 2019, 23, 453–461. [Google Scholar]
- Cooper, J.; Dingle, L. Engineering an afterburner for a miniature gas turbine engine. Aircr. Eng. Aerosp. Technol. 2005, 77, 104–108. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Tan, T.; Du, J.; Zhou, J.; Liu, C. Design and characteristic calculation of combustion chamber of hydrogen-fueled scramjet based on constant static temperature heating method. In Proceedings of the 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE), Brussels, Belgium, 22–25 July 2019. [Google Scholar]
- Large, J.; Pesyridis, A. Investigation of micro gas turbine systems for high speed long loiter tactical unmanned air systems. Aerospace 2019, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Sohret, Y.; Sogut, M.Z.; Karakoc, T.H.; Turan, O. Customised application of exergy analysis method to PW120A turboprop engine for performance evaluation. Int. J. Exergy 2016, 20, 48–65. [Google Scholar] [CrossRef]
- Ekici, S.; Sohret, Y.; Coban, K.; Altuntas, O.; Karakoc, T.H. Performance evaluation of an experimental turbojet engine. Int. J. Turbo Jet Eng. 2017, 34, 365–375. [Google Scholar] [CrossRef]
- Turan, O. An exergy way to quantify sustainability metrics for a high bypass turbofan engine. Energy 2015, 86, 722–736. [Google Scholar] [CrossRef]
- Kaya, N.; Turan, O.; Midilli, A.; Karakoc, T.H. Exergetic sustainability improvement potentials of a hydrogen fueled turbofan engine UAV by heating its fuel with exhaust gasses. Int. J. Hydrog. Energy 2016, 41, 8307–8322. [Google Scholar] [CrossRef]
- Jin, Y.; Du, J.; Li, Z.; Zhang, H. Second-law analysis of irreversible losses in gas turbines. Entropy 2017, 19, 470. [Google Scholar] [CrossRef]
- Ekici, S.; Altuntas, O.; Acikkalp, E.; Sogut, M.Z.; Karakoc, T.H. Assessment of thermodynamic performance and exergetic sustainability of turboprop engine using mixture of kerosene and methanol. Int. J. Exergy 2016, 19, 295–314. [Google Scholar] [CrossRef]
- Coban, K.; Colpan, C.O.; Karakoc, T.H. Application of thermodynamic laws on a military helicopter engine. Energy 2017, 140, 1427–1436. [Google Scholar] [CrossRef]
- Altayib, K. Energy, Exergy and Exergoeconomic Analyses of Gas Turbine Based Systems. Master’s Thesis, University of Ontario Institute of Technology, Oshawa, ON, Canada, 2011. [Google Scholar]
- Balli, O. Exergetic, exergoeconomic, sustainability and environmental damage cost analyses of J85 turbojet engine with afterburner. Int. J. Turbo Jet Eng. 2017, 34. [Google Scholar] [CrossRef]
- Tsatsaronis, G. Recent developments in exergy analysis and exergoeconomics. Int. J. Exergy 2008, 5, 489–499. [Google Scholar] [CrossRef]
- Aydin, H.; Turan, O.; Midilli, A.; Karakoc, T.H. Exergetic and exergoeconomic analysis of a turboprop engine: A case study for CT7-9C. Int. J. Exergy 2012, 11, 69–82. [Google Scholar] [CrossRef]
- Balli, O. A parametric study of hydrogen fuel effects on exergetic, exergoeconomic and exergoenvironmental cost performances of an aircraft turbojet engine. Int. J. Turbo Jet Eng. 2019, 36. [Google Scholar] [CrossRef]
- Altuntas, O.; Karakoc, T.H.; Hepbasli, A. Exergetic, exergoeconomic and sustainability assessment of piston-prop aircraft engine. Int. J. Therm. Sci. Technol. 2012, 32, 133–143. [Google Scholar]
- Petrakopoulou, F.; Tsatsaronis, G.; Morosuk, T. Evaluation of a power plant with chemical looping combustion using an advanced exergoeconomic analysis. Sustain. Energy Technol. Assess. 2013, 3, 9–16. [Google Scholar] [CrossRef]
- Petrakopoulou, F.; Tsatsaronis, G.; Morosuk, T.; Carassai, A. Advanced exergoeconomic analysis applied to a complex energy conversion system. ASME J. Eng. Gas Turbines Power 2012, 134, 1801–1808. [Google Scholar] [CrossRef]
- Acikkalp, E.; Aras, H.; Hepbasli, A. Advanced exergoeconomic analysis of an electricity-generating facility that operates with natural gas. Energy Convers. Manag. 2014, 78, 452–460. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, B.; Wu, S.; Chen, Q.; Tsatsaronis, G. Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs. Energy 2012, 42, 424–433. [Google Scholar] [CrossRef]
- Tsatsaronis, G.; Morosuk, T. Advanced exergoeconomic evaluation and its application to compression refrigeration machines. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Seattle, WA, USA, 11–15 November 2007. [Google Scholar]
- Ochoa, G.V.; Rojas, J.P.; Forero, J.D. Advanced exergo-economic analysis of a waste heat recovery system using ORC for a bottoming natural gas engine. Energies 2020, 13, 267. [Google Scholar] [CrossRef] [Green Version]
- Anvari, S.; Saray, R.K.; Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production. Energy 2015, 91, 925–939. [Google Scholar] [CrossRef]
- Tsatsaronis, G.; Park, M.H. On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Convers. Manag. 2002, 43, 1259–1270. [Google Scholar] [CrossRef]
- Cziesla, F.; Tsatsaronis, G.; Gao, Z. Avoidable thermodynamic inefficiencies and costs in an externally fired combined cycle power plant. Energy 2006, 31, 1472–1489. [Google Scholar] [CrossRef]
- Yuksel, B.; Balli, O.; Gunerhan, H.; Hepbasli, A. Comparative performance metric assessment of a military turbojet engine utilizing hydrogen and kerosene fuels through advanced exergy analysis method. Energies 2020, 13, 1205. [Google Scholar] [CrossRef] [Green Version]
- TurAF-Turkish Air Forces. 1’st Air Supply and Maintenance Center, Annually Operation and Maintenance Report; First Air Supply and Maintenance Center: Eskisehir, Turkey, 2019. [Google Scholar]
- National Research Council (US). Permissible Exposure Levels for Selected Military Fuel Vapors; The National Academies Press: Washington, DC, USA, 1996. [Google Scholar]
- Abe, I. Physical and chemical properties of hydrogen. Energy Carriers Convers. Syst. 2012, 1, 1–3. [Google Scholar]
- Vatani, A.; Mehrpooya, M.; Palizdar, A. Advanced exergetic analysis of five natural gas liquefaction processes. Energy Convers. Manag. 2014, 78, 720–737. [Google Scholar] [CrossRef]
- Sohret, Y.; Acikkalp, E.; Hepbasli, A.; Karakoc, T.H. Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts. Energy 2015, 90, 1219–1228. [Google Scholar] [CrossRef]
- Kelly, S.; Tsatsaronis, G.; Morosuk, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts. Energy 2009, 34, 384–391. [Google Scholar] [CrossRef]
- Balli, O. Advanced exergy analyses of an aircraft turboprop engine (TPE). Energy 2017, 124, 599–612. [Google Scholar] [CrossRef]
- Callak, M.; Balkan, F.; Hepbasli, A. Avoidable and unavoidable exergy destructions of a fluidized bed coal combustor and a heat recovery steam generator. Energy Convers. Manag. 2015, 98, 54–58. [Google Scholar] [CrossRef]
- Shivam, M.; Sohret, Y.; Sanjay, O. Advanced exergy analysis of aero gas turbine cycle based on air-film blade cooling. In Proceedings of the International Symposium on Sustainable Aviation, ISSA-2017-302, Kiev, Ukraine, 10–13 September 2017. [Google Scholar]
- Petrakopoulou, F.; Tsatsaronis, G.; Morosuk, T.; Carassai, A. Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy 2012, 41, 146–152. [Google Scholar] [CrossRef]
Description | Unit | Equation | Equation No |
---|---|---|---|
The cost rate of exergy flow, | ($/h) | (4) | |
The hourly rate of total investment cost, | ($/h) | (5) | |
The hourly rate of the TJE’s maintenance cost, | ($/h) | (6) | |
The hourly rate of maintenance cost, | ($/h) | (7) | |
The hourly rate of the TJE’s investment cost, | ($/h) | (8) | |
The hourly rate of investment cost, | ($/h) | (9) | |
The total hourly rate of the TJE’s investment cost, | ($/h) | (10) |
Description | Unit | Equation | Equation No |
---|---|---|---|
The TJE’s present worth, | ($) | (11) | |
The TJE’s salvage value, | ($) | (12) | |
The TJE’s present value factor, | (-) | (13) | |
The TJE’s yearly capital cost rate, | ($/yr) | (14) | |
Capital recovery factor, | (-) | (15) | |
The cost rate of yearly fuel, | ($/yr) | (16) | |
The TJE’s hourly fuel cost rate, | ($/h) | (17) |
SEC. | |||||
---|---|---|---|---|---|
AC | 31.67 | 380,000 | 133 | 76.00 | 209 |
CC | 20.83 | 250,000 | 87.64 | 50.00 | 138 |
GT | 29.17 | 350,000 | 123 | 70.00 | 193 |
FED | 6.25 | 75,000 | 26.29 | 15.00 | 41.29 |
ABED | 10.00 | 120,000 | 42.07 | 24.00 | 66.07 |
GTMS | 2.08 | 25,000 | 8.76 | 5.00 | 13.76 |
TJE | 100.00 | 1,200,000 | 421 | 240.00 | 661 |
Section | Unit | Equation | Equation No. |
---|---|---|---|
| (kW) | (18) | |
($/h) | (19) | ||
($/GJ) | (20) | ||
| (kW) | (21) | |
($/h) | (22) | ||
| (kW) | (23) | |
($/h) | (24) | ||
| (kW) | (25) | |
($/h) | (26) | ||
| (kW) | , | (27) |
($/h) | , | (28) | |
| (kW) | , | (29) |
($/h) | , | (30) | |
| (kW) | (31) | |
($/h) | (32) | ||
(TJE–MIL) | (kW) | (33) | |
($/h) | (34) | ||
(TJE-AB) | (kW) | (35) | |
($/h) | (36) |
Description | Unit | Equation | Equation No |
---|---|---|---|
Exergy efficiency, | (%) | (37) | |
Sustainability effect factor, | (-) | (38) | |
Sustainability cost index, | ($/GJ) | (39) | |
Unit exergy cost rate of product, | ($/GJ) | (40) | |
Economic benefit of amelioration potential rate, | ($/h) | (41) | |
Total cost rate of the TJE, | ($/h) | (42) | |
Exergy loss cost rate, | ($/h) | (43) | |
Exergy destruction cost rate, | ($/h) | (44) | |
Exergy consumption cost rate, | ($/h) | (45) | |
Relative cost difference, | (%) | (46) | |
Exergoeconomic factor, | (%) | (47) |
Location No | Ex (kW) | Ex (GJ/h) | c ($/GJ) | ($/h) |
---|---|---|---|---|
0 | 0.00 | 0.00 | 0.00 | 0.00 |
1 | 0.00 | 0.00 | 0.00 | 0.00 |
2 | 4700 | 16.92 | 82.91 | 1403 |
2.1 | 4230 | 15.23 | 82.91 | 1263 |
2.2 | 470 | 1.69 | 82.91 | 140 |
2.3 | 740 | 2.66 | 52.68 | 140 |
2.4 | 720 | 2.59 | 54.11 | 140 |
2.5 | 699 | 2.52 | 55.78 | 140 |
2.5 * | 1714 | 6.17 | 22.74 | 140 |
3 | 16,554 | 59.59 | 12.49 | 745 |
4 | 13,258 | 47.73 | 44.94 | 2145 |
5 | 7156 | 25.76 | 44.94 | 1158 |
6 | 6966 | 25.08 | 47.81 | 1199 |
7 | 6746 | 24.29 | 52.09 | 1265 |
7 * | 20,164 | 72.59 | 38.46 | 2792 |
10 * | 33,941 | 122 | 12.49 | 1527 |
8 | 5640 | 20.30 | 58.12 | 1180 |
9 | 5583 | 20.10 | 59.39 | 1194 |
TJE-MIL | 5106 | 18.38 | 76.45 | 1405 |
TJE-AB | 8575 | 30.87 | 94.97 | 2932 |
Location No | Ex (kW) | Ex (GJ/h) | c ($/GJ) | ($/h) |
---|---|---|---|---|
0 | 0.00 | 0.00 | 0.00 | 0.00 |
1 | 0.00 | 0.00 | 0.00 | 0.00 |
2 | 4700 | 16.92 | 174 | 2949 |
2.1 | 4230 | 15.23 | 174 | 2654 |
2.2 | 470 | 1.69 | 174 | 295 |
2.3 | 710 | 2.56 | 115 | 295 |
2.4 | 690 | 2.48 | 119 | 295 |
2.5 | 665 | 2.39 | 123 | 295 |
2.5 * | 1677 | 6.04 | 48.84 | 295 |
3 | 17,594 | 63.34 | 40.81 | 2585 |
4 | 13,349 | 48.06 | 112 | 5376 |
5 | 7059 | 25.41 | 112 | 2843 |
6 | 6857 | 24.68 | 117 | 2884 |
7 | 6551 | 23.59 | 125 | 2950 |
7 * | 18,853 | 67.87 | 122 | 8250 |
10 * | 36,075 | 130 | 40.81 | 5300 |
8 | 5737 | 20.65 | 132 | 2726 |
9 | 5583 | 20.10 | 136 | 2740 |
TJE-MIL | 5035 | 18.13 | 179 | 3245 |
TJE-AB | 8228 | 29.62 | 288 | 8545 |
Description | Unit | Equation | Equation No |
---|---|---|---|
Endogenous exergy destruction rate, | (GJ/h) | (48) | |
Exogenous exergy destruction, | (GJ/h) | (49) | |
Unavoidable exergy destruction, | (GJ/h) | (50) | |
Avoidable exergy destruction, | (GJ/h) | (51) | |
Unavoidable-endogenous exergy destruction, | (GJ/h) | (52) | |
Unavoidable-exogenous exergy destruction, | (GJ/h) | (53) | |
Avoidable-endogenous exergy destruction, | (GJ/h) | (54) | |
Avoidable-exogenous exergy destruction, | (GJ/h) | (55) |
Equation No | Equation No | Unit | ||
---|---|---|---|---|
(56) | (64) | ($/h) | ||
(57) | (65) | ($/h) | ||
(58) | (66) | ($/h) | ||
(59) | (67) | ($/h) | ||
(60) | (68) | ($/h) | ||
(61) | (69) | ($/h) | ||
(62) | (70) | ($/h) | ||
(63) | (71) | ($/h) |
SEC. | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | 5583 | 4700 | 883 | 84.19 | 6.32 | 13.11 | 29.84 | 59.39 | 82.91 | 189 | 209 | 39.60 | 52.57 |
CC | 16,554 | 9028 | 7525 | 54.54 | 2.20 | 20.43 | 154 | 12.49 | 44.94 | 338 | 138 | 260 | 28.91 |
GT | 5833 | 5640 | 193 | 96.69 | 30.23 | 1.92 | 1.06 | 46.24 | 58.12 | 32.12 | 193 | 25.69 | 85.71 |
FED | 7895 | 7686 | 209 | 97.35 | 37.70 | 1.28 | 0.91 | 45.66 | 48.40 | 34.43 | 41.29 | 5.99 | 54.53 |
ABED | 7686 | 7445 | 241 | 96.86 | 31.84 | 1.65 | 1.32 | 48.40 | 52.43 | 42.06 | 66.07 | 8.34 | 61.10 |
GTMS | 5640 | 5583 | 57.13 | 98.99 | 98.73 | 0.60 | 0.12 | 58.12 | 0.35 | 11.95 | 13.76 | 2.20 | 53.52 |
Total Destruction Rate | - | 9109 | - | - | - | - | - | 410 | - | - | - | ||
Total Losses Rate | - | 2338 | - | - | - | - | - | 105 | - | - | - | ||
TJE | 16,554 | 5106 | 11,447 | 30.85 | 1.45 | 52.86 | 356 | 12.49 | 76.45 | 515 | 661 | 512 | 56.20 |
SEC. | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | 5583 | 4700 | 883 | 84.19 | 6.32 | 13.11 | 29.84 | 59.39 | 82.91 | 189 | 209 | 39.60 | 52.57 |
CC | 16,554 | 9028 | 7525 | 54.54 | 2.20 | 20.43 | 154 | 12.49 | 44.94 | 338 | 138 | 260 | 28.91 |
GT | 5833 | 5640 | 193 | 96.69 | 30.23 | 1.92 | 1.06 | 46.24 | 58.12 | 32.12 | 193 | 25.69 | 85.71 |
FED | 7895 | 7686 | 209 | 97.35 | 37.70 | 1.28 | 0.91 | 45.66 | 48.40 | 34.43 | 41.29 | 5.99 | 54.53 |
ABED | 41,606 | 21,878 | 19,728 | 52.58 | 2.11 | 17.65 | 644 | 19.12 | 37.23 | 1360 | 66.07 | 94.66 | 4.63 |
GTMS | 5640 | 5583 | 57.13 | 98.99 | 98.73 | 0.60 | 0.12 | 58.12 | 0.35 | 11.95 | 13.76 | 2.20 | 53.52 |
Total Destruction Rate | - | 28,595 | - | - | - | - | - | 1286 | - | - | - | ||
Total Losses Rate | - | 13,324 | - | - | - | - | - | 599 | - | - | - | ||
TJE | 50,495 | 8575 | 41,920 | 16.98 | 1.20 | 78.84 | 1565 | 12.49 | 94.97 | 1886 | 661 | 660 | 25.95 |
SEC. | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | 5583 | 4700 | 883 | 84.19 | 6.32 | 27.56 | 68.50 | 136 | 174 | 433 | 209 | 27.85 | 32.57 |
CC | 17,594 | 9119 | 8475 | 51.83 | 2.08 | 53.89 | 600 | 40.81 | 112 | 1245 | 138 | 174 | 9.95 |
GT | 6050 | 5737 | 313 | 94.82 | 19.32 | 6.83 | 6.65 | 114 | 132 | 129 | 193 | 15.78 | 59.99 |
FED | 7769 | 7546 | 223 | 97.13 | 34.88 | 3.36 | 2.58 | 112 | 117 | 90 | 41.29 | 4.31 | 31.46 |
ABED | 7546 | 7216 | 330 | 95.62 | 22.84 | 5.47 | 6.09 | 117 | 125 | 139 | 66.07 | 6.75 | 32.19 |
GTMS | 5737 | 5583 | 154 | 97.31 | 37.16 | 3.67 | 1.97 | 132 | 136 | 73.37 | 13.76 | 3.28 | 15.80 |
Total Destruction Rate | - | 10,378 | - | - | - | - | 1525 | - | - | - | |||
Total Losses Rate | - | 2181 | - | - | - | - | 320 | - | - | - | |||
TJE | 17,594 | 5035 | 12,559 | 28.62 | 1.40 | 128 | 1317 | 40.81 | 179 | 1845 | 661 | 339 | 26.37 |
SEC. | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | 5583 | 4700 | 883 | 84.19 | 6.32 | 27.56 | 68.50 | 136 | 174 | 433 | 209 | 27.85 | 32.57 |
CC | 17,594 | 9119 | 8475 | 51.83 | 2.08 | 53.89 | 600 | 40.81 | 112 | 1245 | 138 | 174 | 9.95 |
GT | 6050 | 5737 | 313 | 94.82 | 19.32 | 6.83 | 6.65 | 114 | 132 | 129 | 193 | 15.78 | 59.99 |
FED | 7769 | 7546 | 223 | 97.13 | 34.88 | 3.36 | 2.58 | 112 | 117 | 90 | 41.29 | 4.31 | 31.46 |
ABED | 43,596 | 20,530 | 23,066 | 47.09 | 1.89 | 61.17 | 2372 | 53.99 | 116 | 4488 | 66.07 | 114 | 1.45 |
GTMS | 5737 | 5583 | 154 | 97.31 | 37.16 | 3.67 | 1.97 | 132 | 136 | 73.37 | 13.76 | 3.28 | 15.80 |
Total Destruction Rate | - | 33,113 | - | - | - | - | - | - | 4865 | - | - | - | |
Total Losses Rate | - | 12,327 | - | - | - | - | - | - | 1811 | - | - | - | |
TJE | 53,669 | 8228 | 45,441 | 15.33 | 1.18 | 244 | 5,652 | 40.81 | 288 | 6676 | 661 | 607 | 9.01 |
SEC. | |||||||||
---|---|---|---|---|---|---|---|---|---|
AC | 209 | 178 | 31.38 | 31.34 | 178 | 151 | 26.64 | 26.68 | 4.70 |
CC | 138 | 110 | 27.53 | 12.62 | 125 | 100 | 10.10 | 25.01 | 2.52 |
GT | 193 | 173 | 19.27 | 12.00 | 181 | 163 | 10.80 | 18.07 | 1.20 |
FED | 41.29 | 35.10 | 6.19 | 5.12 | 36.17 | 30.74 | 4.35 | 5.43 | 0.77 |
ABED-MIL | 66.07 | 52.85 | 13.21 | 9.05 | 57.02 | 45.61 | 7.24 | 11.40 | 1.81 |
ABED-AB | 66.07 | 52.85 | 13.21 | 11.15 | 54.92 | 43.94 | 8.92 | 10.98 | 2.23 |
GTMS | 13.76 | 12.39 | 1.38 | 0.94 | 12.82 | 11.54 | 0.85 | 1.28 | 0.09 |
TJE-MIL | 661 | 562 | 99 | 65 | 596 | 506 | 55.33 | 89.21 | 9.75 |
TJE-AB | 661 | 562 | 99 | 97 | 564 | 479 | 82.36 | 84.45 | 14.51 |
SEC. | |||||||||
---|---|---|---|---|---|---|---|---|---|
AC | 189 | 154 | 34.36 | 28.28 | 160 | 130 | 24.00 | 30.08 | 4.28 |
CC | 338 | 329 | 9.34 | 31.04 | 307 | 299 | 30.31 | 8.61 | 0.74 |
GT | 32.12 | 19.48 | 12.64 | 2.00 | 30.12 | 18.15 | 1.33 | 11.97 | 0.67 |
FED | 34.43 | 22.51 | 11.92 | 4.27 | 30.16 | 19.62 | 2.89 | 10.54 | 1.38 |
ABED-MIL | 42.06 | 23.35 | 18.70 | 5.76 | 36.30 | 19.97 | 3.38 | 16.33 | 2.38 |
ABED-AB | 1360 | 1152 | 208 | 231 | 1129 | 955 | 197 | 174 | 33.79 |
GTMS | 11.95 | 6.52 | 5.43 | 0.82 | 11.14 | 6.04 | 0.47 | 5.09 | 0.34 |
TJE-MIL | 515 | 380 | 134 | 146 | 369 | 343 | 37.48 | 26.36 | 108 |
TJE-AB | 1886 | 1127 | 759 | 788 | 1098 | 962 | 165 | 136 | 623 |
SEC. | |||||||||
---|---|---|---|---|---|---|---|---|---|
AC | 209 | 178 | 31.38 | 28.38 | 181 | 154 | 24.12 | 27.12 | 4.26 |
CC | 138 | 110 | 27.53 | 13.98 | 124 | 98.93 | 11.18 | 24.73 | 2.80 |
GT | 193 | 173 | 19.27 | 30.61 | 162 | 146 | 27.55 | 16.21 | 3.06 |
FED | 41.29 | 35.10 | 6.19 | 4.02 | 37.27 | 31.68 | 3.42 | 5.59 | 0.60 |
ABED-MIL | 66.07 | 52.85 | 13.21 | 8.70 | 57.37 | 45.89 | 6.96 | 11.47 | 1.74 |
ABED-AB | 66.07 | 52.85 | 13.21 | 12.31 | 53.76 | 43.01 | 9.85 | 10.75 | 2.46 |
GTMS | 13.76 | 12.39 | 1.38 | 1.26 | 12.50 | 11.25 | 1.13 | 1.25 | 0.13 |
TJE-MIL | 661 | 562 | 99 | 70.64 | 590 | 502 | 60.05 | 88.38 | 10.58 |
TJE-AB | 661 | 562 | 99 | 71.42 | 589 | 501 | 60.72 | 88.27 | 10.70 |
SEC. | |||||||||
---|---|---|---|---|---|---|---|---|---|
AC | 433 | 354 | 78.86 | 58.77 | 374 | 305 | 49.61 | 69.70 | 9.16 |
CC | 1245 | 1201 | 44.12 | 126 | 1119 | 1080 | 121 | 38.94 | 5.18 |
GT | 129 | 86.98 | 41.53 | 20.41 | 108 | 71.22 | 15.76 | 36.88 | 4.65 |
FED | 89.97 | 56.68 | 33.29 | 8.76 | 81.21 | 50.35 | 6.33 | 30.86 | 2.43 |
ABED-MIL | 139 | 76.60 | 62.60 | 18.33 | 121 | 64.43 | 12.17 | 56.44 | 6.16 |
ABED-AB | 4488 | 3709 | 779 | 840 | 3648 | 3007 | 703 | 641 | 138 |
GTMS | 73.37 | 41.46 | 31.91 | 6.72 | 66.65 | 37.64 | 3.82 | 29.01 | 2.90 |
TJE-MIL | 1845 | 1398 | 447 | 483 | 1362 | 1249 | 149 | 113 | 334 |
TJE-AB | 6676 | 4175 | 2501 | 2599 | 4077 | 3499 | 676 | 578 | 1923 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuksel, B.; Gunerhan, H.; Hepbasli, A. Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels. Energies 2020, 13, 3823. https://doi.org/10.3390/en13153823
Yuksel B, Gunerhan H, Hepbasli A. Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels. Energies. 2020; 13(15):3823. https://doi.org/10.3390/en13153823
Chicago/Turabian StyleYuksel, Burak, Huseyin Gunerhan, and Arif Hepbasli. 2020. "Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels" Energies 13, no. 15: 3823. https://doi.org/10.3390/en13153823
APA StyleYuksel, B., Gunerhan, H., & Hepbasli, A. (2020). Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels. Energies, 13(15), 3823. https://doi.org/10.3390/en13153823