Co-Digestion of Salix and Manure for Biogas: Importance of Clone Choice, Coppicing Frequency and Reactor Setup
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Trial and Substrates
2.2. Biomethanation Potential Assay
2.3. Continuous Digestion Experiments
2.3.1. Single-Stage Continuous Digestion
2.3.2. Sequential Continuous Digestion
2.4. Chemical Analyses
2.5. Calculations and Statistical Analyses
3. Results and Discussion
3.1. Field Experiment Biomass Yields
3.2. Biomethanation Potentials
3.3. Co-Digestion of Salix and Manure
3.4. Effect of Co-Digestion on Digestate
3.5. Area Requirements and Estimated Yields from Co-Digestion of Salix in Farm Scale Digesters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- European Biomass Association. A Biogas Road Map for Europe. Available online: http://www.aebiom.org/IMG/pdf/Brochure_BiogasRoadmap_WEB.pdf (accessed on 10 July 2020).
- Lönnqvist, T.; Silveira, S.; Sanches-Pereira, A. Swedish resource potential from residues and energy crops to enhance biogas generation. Renew. Sustain. Energy Rev. 2013, 21, 298–314. [Google Scholar] [CrossRef]
- Scarlat, N.; Fahl, F.; Dallemand, J.-F.; Monforti, F.; Motola, V. A spatial analysis of biogas potential from manure in Europe. Renew. Sustain. Energy Rev. 2018, 94, 915–930. [Google Scholar] [CrossRef]
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar] [CrossRef]
- Monlau, F.; Barakat, A.; Trably, E.; Dumas, C.; Steyer, J.-P.; Carrère, H. Lignocellulosic Materials into Biohydrogen and Biomethane: Impact of Structural Features and Pretreatment. Crit. Rev. Environ. Sci. Technol. 2013, 43, 260–322. [Google Scholar] [CrossRef]
- Börjesson, P.I.I. Energy analysis of biomass production and transportation. Biomass Bioenergy 1996, 11, 305–318. [Google Scholar] [CrossRef]
- Boehmel, C.; Lewandowski, I.; Claupein, W. Comparing annual and perennial energy cropping systems with different management intensities. Agric. Syst. 2008, 96, 224–236. [Google Scholar] [CrossRef]
- De Wit, M.; Faaij, A. European biomass resource potential and costs. Biomass Bioenergy 2010, 34, 188–202. [Google Scholar] [CrossRef]
- Lijó, L.; Lorenzo-Toja, Y.; González-García, S.; Bacenetti, J.; Negri, M.; Moreira, M.T. Eco-efficiency assessment of farm-scaled biogas plants. Bioresour. Technol. 2017, 237, 146–155. [Google Scholar] [CrossRef]
- Ericsson, N.; Nordberg, A.; Sundberg, C.; Ahlgren, S.; Hansson, P.-A. Climate impact and energy efficiency from electricity generation through anaerobic digestion or direct combustion of short rotation coppice willow. Appl. Energy 2014, 132, 86–98. [Google Scholar] [CrossRef]
- Li, C.; Sun, L.; Simmons, B.A.; Singh, S. Comparing the Recalcitrance of Eucalyptus, Pine, and Switchgrass Using Ionic Liquid and Dilute Acid Pretreatments. BioEnergy Res. 2013, 6, 14–23. [Google Scholar] [CrossRef]
- Healey, A.L.; Lupoi, J.S.; Lee, D.J.; Sykes, R.W.; Guenther, J.M.; Tran, K.; Decker, S.R.; Singh, S.; Simmons, B.A.; Henry, R.J. Effect of aging on lignin content, composition and enzymatic saccharification in Corymbia hybrids and parental taxa between years 9 and 12. Biomass Bioenergy 2016, 93, 50–59. [Google Scholar] [CrossRef]
- Chundawat, S.P.S.; Beckham, G.T.; Himmel, M.E.; Dale, B.E. Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 121–145. [Google Scholar] [CrossRef] [PubMed]
- Teghammar, A.; Forgács, G.; Sárvári Horváth, I.; Taherzadeh, M.J. Techno-economic study of NMMO pretreatment and biogas production from forest residues. Appl. Energy 2014, 116, 125–133. [Google Scholar] [CrossRef]
- Ohlsson, J.A.; Harman-Ware, A.E.; Sandgren, M.; Schnürer, A. Biomass Recalcitrance in Willow Under Two Biological Conversion Paradigms: Enzymatic Hydrolysis and Anaerobic Digestion. BioEnergy Res. 2019, 311, 1–11. [Google Scholar] [CrossRef]
- Weih, M.; Hansson, P.-A.; Ohlsson, J.A.; Sandgren, M.; Schnürer, A.; Rönnberg Wästljung, A.C. Sustainable production of willow for biofuel use. In Achieving Carbon-Negative Bioenergy Systems from Plant Materials; Saffron, C., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 1–36. [Google Scholar] [CrossRef]
- Olsson, M.; Samils, B. Site Characterization at Energy Forest Production; Department of Forest Soils, Swedish University of Agricultural Sciences: Uppsala, Sweden, 1984. [Google Scholar]
- Schnürer, A.; Bohn, I.; Moestedt, J. Protocol for Start-Up and Operation of CSTR Biogas Processes. In Hydrocarbon and Lipid Microbiology Protocols; McGenity, T., Timmis, K., Nogales, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 44, pp. 171–200. [Google Scholar]
- ISO 13878. Soil Quality—Determination of Total Nitrogen Content by Dry Combustion (Elemental Analysis); International Organization for Standardization (ISO): Geneva, Switzerland, 1998. [Google Scholar]
- ISO 10694. Soil Quality–Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis); International Organization for Standardization (ISO): Geneva, Switzerland, 1998. [Google Scholar]
- Westerholm, M.; Hansson, M.; Schnürer, A. Improved biogas production from whole stillage by co-digestion with cattle manure. Bioresour. Technol. 2012, 114, 314–319. [Google Scholar] [CrossRef]
- Westerholm, M.; Roos, S.; Schnürer, A. Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol. Lett. 2010, 309, 100–104. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Lenth, R. Emmeans: Estimated Marginal Means, AKA Least-Squares Means, R package version 1.4.7. 2020. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 24 July 2020).
- Ahlberg-Eliasson, K.; Nadeau, E.; Levén, L.; Schnürer, A. Production efficiency of Swedish farm-scale biogas plants. Biomass Bioenergy 2017, 97, 27–37. [Google Scholar] [CrossRef]
- Mola-Yudego, B.; Díaz-Yáñez, O.; Dimitriou, I. How Much Yield Should We Expect from Fast-Growing Plantations for Energy? Divergences Between Experiments and Commercial Willow Plantations. BioEnergy Res. 2015, 8, 1769–1777. [Google Scholar] [CrossRef]
- Adler, A.; Verwijst, T.; Aronsson, P. Estimation and relevance of bark proportion in a willow stand. Biomass Bioenergy 2005, 29, 102–113. [Google Scholar] [CrossRef]
- Serapiglia, M.J.; Cameron, K.D.; Stipanovic, A.J.; Smart, L.B. Analysis of Biomass Composition Using High-Resolution Thermogravimetric Analysis and Percent Bark Content for the Selection of Shrub Willow Bioenergy Crop Varieties. BioEnergy Res. 2009, 2, 1–9. [Google Scholar] [CrossRef]
- McCann, M.C.; Carpita, N.C. Biomass recalcitrance: A multi-scale, multi-factor, and conversion-specific property. J. Exp. Bot. 2015, 66, 4109–4118. [Google Scholar] [CrossRef] [PubMed]
- Sykes, R.; Kodrzycki, B.; Tuskan, G.; Foutz, K.; Davis, M. Within tree variability of lignin composition in Populus. Wood Sci. Technol. 2008, 42, 649–661. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.S.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Estevez, M.M.; Linjordet, R.; Morken, J. Effects of steam explosion and co-digestion in the methane production from Salix by mesophilic batch assays. Bioresour. Technol. 2012, 104, 749–756. [Google Scholar] [CrossRef]
- Estevez, M.M.; Sapci, Z.; Linjordet, R.; Schnürer, A.; Morken, J. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate. J. Environ. Manag. 2014, 136, 9–15. [Google Scholar] [CrossRef]
- Li, R.; Tan, W.; Zhao, X.; Dang, Q.; Song, Q.; Xi, B.; Zhang, X. Evaluation on the Methane Production Potential of Wood Waste Pretreated with NaOH and Co-Digested with Pig Manure. Catalysts 2019, 9, 539. [Google Scholar] [CrossRef]
- Lynd, L.R.; Liang, X.; Biddy, M.J.; Allee, A.; Cai, H.; Foust, T.; Himmel, M.E.; Laser, M.S.; Wang, M.; Wyman, C.E. Cellulosic ethanol: Status and innovation. Curr. Opin. Biotechnol. 2017, 45, 202–211. [Google Scholar] [CrossRef]
- Eggeman, T.; Elander, R.T. Process and economic analysis of pretreatment technologies. Bioresour. Technol. 2005, 96, 2019–2025. [Google Scholar] [CrossRef]
- Hopfner-Sixt, K.; Amon, T.; Bodiroza, V.; Kryvoruchko, V.; Milanovic, D.; Zollitsch, W.; Boxberger, J. Biogas Production from Agricultural Raw Materials: Characteristic Values for Assessing Material and Energy. Landtechnik 2006, 61, 148–149. [Google Scholar]
- Alburquerque, J.A.; de la Fuente, C.; Bernal, M.P. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agric. Ecosyst. Environ. 2012, 160, 15–22. [Google Scholar] [CrossRef]
- Eich-Greatorex, S.; Vivekanand, V.; Estevez, M.M.; Schnürer, A.; Børresen, T.; Sogn, T.A. Biogas digestates based on lignin-rich feedstock—Potential as fertilizer and soil amendment. Arch. Agron. Soil Sci. 2017, 64, 347–359. [Google Scholar] [CrossRef]
- Stürmer, B.; Pfundtner, E.; Kirchmeyr, F.; Uschnig, S. Legal requirements for digestate as fertilizer in Austria and the European Union compared to actual technical parameters. J. Environ. Manag. 2020, 253, 109756. [Google Scholar] [CrossRef]
- Pulford, I.D.; Riddell-Black, D.; Stewart, C. Heavy Metal Uptake by Willow Clones from Sewage Sludge-Treated Soil: The Potential for Phytoremediation. Int. J. Phytoremediat. 2002, 4, 59–72. [Google Scholar] [CrossRef]
Clone | Shoot Age | ||
---|---|---|---|
1 | 2 | 3 | |
78183 | 140.5 (±10.9) | 180.2 (±11.6) | 154.4 (±17.9) |
78195 | 132.3 (±8.4) | 186.8 (±8.5) | 142.0 (±18.4) |
Björn | 125.8 (±7.0) | 177.2 (±5.6) | 159.2 (±9.0) |
Jorr | 159.3 (±6.8) | 198.3 (±12.2) | 156.0 (±15.1) |
Olof | 127.6 (±3.3) | 187.5 (±18.2) | 125.0 (±14.7) |
Tora | 139.8 (±7.9) | 176.5 (±13.5) | 158.0 (±22.4) |
Parameter | Manure | Salix | Single Stage a | Sequential b |
---|---|---|---|---|
TS (% of wet weight) | 8.2 | 47.7 | 13.2 | 10.5 |
VS (% of wet weight) | 6.7 | 46.7 | 11.7 | 9.1 |
VS (% of TS) | 81.7 | 97.9 | 88.6 | 86.7 |
Total N (g kg−1) | 4.5 | 2.4 | 4.2 | 4.8 |
Organic N (g kg−1) | 2.1 | 2.4 | 2.1 | 1.6 |
-N (g kg−1) | 2.4 | 0.0 | 2.1 | 3.3 |
Total C (g kg−1) | 38 | 215 | 60 | 50 |
C/N (TotC/TotN) | 8.4 | 88.7 | 14.2 | 10.4 |
Total P (g kg−1) | 0.51 | 0.15 | 0.46 | 0.52 |
K (g kg−1) | 4.2 | 0.5 | 3.9 | 3.8 |
Mg (g kg−1) | 0.51 | 0.15 | 0.48 | 0.50 |
Ca (g kg−1) | 1.3 | 1.8 | 1.5 | 1.5 |
Na (g kg−1) | 0.1 | 0.0 | 0.07 | 0.06 |
S (g kg−1) | 0.5 | 0.15 | 0.39 | 0.38 |
Parameter | Co-Digestion | ||
---|---|---|---|
Manure | Single Stage | Sequential | |
Specific methane production (NmL (g VS)−1) | 176 | 122 | 192 |
Volumetric methane production (NmL L−1 d−1) | 264 | 367 | 577 |
OLR (g L−1 d−1) | 1.5 | 3.0 | 3.0 a |
HRT (d, average) | 36 | 36 | 36 + 40 b |
Parameter | Co-Digestion | ||
---|---|---|---|
Manure | Single Stage a | Sequential | |
TS (% of wet weight) | 6.2 | 10.5 | 6.1 |
VS (% of wet weight) | 4.7 | 9.1 | 5.3 |
VS (% of TS) | 75.3 | 86.7 | 86.9 |
Total N (g kg−1) | 5.0 | 4.8 | 4.3 |
Organic N (g kg−1) | 1.5 | 1.6 | 1.4 |
-N (g kg−1) | 3.5 | 3.3 | 2.8 |
Total C (g kg−1) | 26 | 50 | 26 |
C/N (TotC/TotN) | 5.2 | 10.4 | 6.1 |
Total P (g kg−1) | 0.58 | 0.52 | 0.53 |
K (g kg−1) | 4.4 | 3.8 | 4.3 |
Mg (g kg−1) | 0.52 | 0.50 | 0.50 |
Ca (g kg−1) | 1.3 | 1.5 | 1.3 |
Na (g kg−1) | 0.13 | 0.06 | 0.17 |
S (g kg−1) | 0.42 | 0.38 | 0.37 |
Manure Control | Scenario A | Scenario B | |||
---|---|---|---|---|---|
Single Stage | Sequential | Single Stage | Sequential | ||
Specific methane production (NmL (g VS)−1) | 176 | 122 | 192 | 149 | 184 |
Volumetric methane production (NmL L−1 d−1) | 264 | 367 | 577 | 316 | 421 |
Yearly methane production for 1000 m3 digester (m3 y−1) | 96,500 | 134,200 | 210,700 | 115,400 | 153,800 |
Gross energy yield for 1000 m3 digester (TJ y−1) | 3.6 | 5.0 | 7.8 | 4.3 | 5.7 |
OLR (g L−1 d−1) | 1.5 | 3.0 | 3.0 a | 2.0 | 2.0 a |
HRT (d, average) | 36 | 36 | 36 + 40 b | 36 | 36 + 40 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohlsson, J.A.; Rönnberg-Wästljung, A.-C.; Nordh, N.-E.; Schnürer, A. Co-Digestion of Salix and Manure for Biogas: Importance of Clone Choice, Coppicing Frequency and Reactor Setup. Energies 2020, 13, 3804. https://doi.org/10.3390/en13153804
Ohlsson JA, Rönnberg-Wästljung A-C, Nordh N-E, Schnürer A. Co-Digestion of Salix and Manure for Biogas: Importance of Clone Choice, Coppicing Frequency and Reactor Setup. Energies. 2020; 13(15):3804. https://doi.org/10.3390/en13153804
Chicago/Turabian StyleOhlsson, Jonas A., Ann-Christin Rönnberg-Wästljung, Nils-Erik Nordh, and Anna Schnürer. 2020. "Co-Digestion of Salix and Manure for Biogas: Importance of Clone Choice, Coppicing Frequency and Reactor Setup" Energies 13, no. 15: 3804. https://doi.org/10.3390/en13153804
APA StyleOhlsson, J. A., Rönnberg-Wästljung, A.-C., Nordh, N.-E., & Schnürer, A. (2020). Co-Digestion of Salix and Manure for Biogas: Importance of Clone Choice, Coppicing Frequency and Reactor Setup. Energies, 13(15), 3804. https://doi.org/10.3390/en13153804