Regional Factors Driving the Deployment of Wind Energy in Spain
Abstract
:1. Introduction
2. Methodology and Data
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Framework Strategy for a Resilient Energy Union with a Forward-Looking Climate Change Policy; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Policy Framework for Climate and Energy in the Period from 2020 to 2030; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Del Río, P.; Resch, G.; Ortner, A.; Liebmann, L.; Busch, S.; Panzer, C. A techno-economic analysis of EU renewable electricity policy pathways in 2030. Energy Policy 2017, 104, 484–493. [Google Scholar] [CrossRef]
- Carley, S.; Baldwin, E.; MacLean, L.M.; Brass, J.N. Global expansion of renewable energy generation: An analysis of policy instruments. Environ. Resour. Econ. 2016, 68, 397–440. [Google Scholar] [CrossRef]
- Kilinc-Ata, N. The evaluation of renewable energy policies across EU countries and US states: An econometric approach. Energy Sustain. Dev. 2016, 31, 83–90. [Google Scholar] [CrossRef]
- Polzin, F.; Migendt, M.; Täube, F.A.; Von Flotow, P. Public policy influence on renewable energy investments—A panel data study across OECD countries. Energy Policy 2015, 80, 98–111. [Google Scholar] [CrossRef] [Green Version]
- Marques, A.C.; Fuinhas, J.A.; Manso, J.R.P. Motivations driving renewable energy in European countries: A panel data approach. Energy Policy 2010, 38, 6877–6885. [Google Scholar] [CrossRef]
- Aguirre, M.; Ibikunle, G. Determinants of renewable energy growth: A global sample analysis. Energy Policy 2014, 69, 374–384. [Google Scholar] [CrossRef] [Green Version]
- Quintana-Rojo, C.; Callejas-Albiñana, F.E.; Tarancón, M.A.; Del Río, P. Assessing the feasibility of deployment policies in wind energy systems. A sensitivity analysis on a multiequational econometric framework. Energy Econ. 2020, 86, 104688. [Google Scholar] [CrossRef]
- Dalmazzone, S.; Corsatea, T.D. A regional analysis of renewable energy patenting in Italy. SSRN Electron. J. 2012. [Google Scholar] [CrossRef]
- Ministry for the Ecological Transition. Plan Nacional Integrado de Energía y Clima PNIEC; Spanish Goverment: Madrid, Spain, 2020.
- United Nations. United Nations Framework Convention on Climate Change, Paris Agreement; United Nations: Paris, France, 2015. [Google Scholar]
- European Environment Agency. Unequal Exposure and Unequal Impacts: Social Vulnerability to Air Pollution, Noise and Extreme Temperatures in Europe, EEA Report 22/2018; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Ivanova, D.; Vita, G.; Steen-Olsen, K.; Stadler, K.; Melo, P.C.; Wood, R.; Hertwich, E. Mapping the carbon footprint of EU regions. Environ. Res. Lett. 2017, 12, 054013. [Google Scholar] [CrossRef]
- Mattes, J.; Huber, A.; Koehrsen, J. Energy transitions in small-scale regions – What we can learn from a regional innovation systems perspective. Energy Policy 2015, 78, 255–264. [Google Scholar] [CrossRef]
- Ghilardi, A.; Guerrero, G.; Masera, O. A GIS-based methodology for highlighting fuelwood supply/demand imbalances at the local level: A case study for Central Mexico. Biomass Bioenergy 2009, 33, 957–972. [Google Scholar] [CrossRef]
- Calvert, K.; Pearce, J.M.; Mabee, W. Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity. Renew. Sustain. Energy Rev. 2013, 18, 416–429. [Google Scholar] [CrossRef] [Green Version]
- Palmas, C.; Siewert, A.; Von Haaren, C. Exploring the decision-space for renewable energy generation to enhance spatial efficiency. Environ. Impact Assess. Rev. 2015, 52, 9–17. [Google Scholar] [CrossRef]
- Faulin, J.; Lera, F.; Pintor, J.M.; García, J.; Lera-López, F. The outlook for renewable energy in Navarre: An economic profile. Energy Policy 2006, 34, 2201–2216. [Google Scholar] [CrossRef]
- Jenniches, S. Assessing the regional economic impacts of renewable energy sources—A literature review. Renew. Sustain. Energy Rev. 2018, 93, 35–51. [Google Scholar] [CrossRef]
- Ejdemo, T.; Söderholm, P. Wind power, regional development and benefit-sharing: The case of Northern Sweden. Renew. Sustain. Energy Rev. 2015, 47, 476–485. [Google Scholar] [CrossRef]
- Del Río, P.; Burguillo, M. An empirical analysis of the impact of renewable energy deployment on local sustainability. Renew. Sustain. Energy Rev. 2009, 13, 1314–1325. [Google Scholar] [CrossRef]
- Cuartas, B.M.; López-Menéndez, A. The effect of renewable energy on employment. The case of Asturias (Spain). Renew. Sustain. Energy Rev. 2008, 12, 732–751. [Google Scholar] [CrossRef]
- Asociación de Empresas de Energías Renovables APPA. Estudio del Impacto Macroeconómico de las Energías Renovables en España: 2018; APPA: Madrid, Spain, 2019; Available online: https://www.appa.es/wp-content/uploads/2019/10/Estudio_del_impacto_Macroeconomico_de_las_energias_renovables_en_Espa%C3%B1a_2018_vff.pdf (accessed on 6 January 2020).
- Horbach, J.; Rammer, C. Energy transition in Germany and regional spill-overs: The diffusion of renewable energy in firms. Energy Policy 2018, 121, 404–414. [Google Scholar] [CrossRef]
- Noailly, J.; Shestalova, V. Knowledge spillovers from renewable energy technologies: Lessons from patent citations. Environ. Innov. Soc. Transitions 2017, 22, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bulkeley, H. Reconfiguring environmental governance: Towards a politics of scales and networks. Political Geogr. 2005, 24, 875–902. [Google Scholar] [CrossRef] [Green Version]
- Coelho, S.; Russo, M.A.; Oliveira, R.; Monteiro, A.; Lopes, M.; Borrego, C. Sustainable energy action plans at city level: A Portuguese experience and perception. J. Clean. Prod. 2018, 176, 1223–1230. [Google Scholar] [CrossRef] [Green Version]
- Coutard, O.; Rutherford, J. Energy transition and city-region planning: Understanding the spatial politics of systemic change. Technol. Anal. Strat. Manag. 2010, 22, 711–727. [Google Scholar] [CrossRef]
- Dehghan, A.A. Status and potentials of renewable energies in Yazd Province-Iran. Renew. Sustain. Energy Rev. 2011, 15, 1491–1496. [Google Scholar] [CrossRef]
- Monstadt, J. Urban governance and the transition of energy systems: Institutional change and shifting energy and climate policies in Berlin. Int. J. Urban Reg. Res. 2007, 31, 326–343. [Google Scholar] [CrossRef]
- Yu, L.; Li, Y.; Huang, G. Planning municipal-scale mixed energy system for stimulating renewable energy under multiple uncertainties—The city of Qingdao in Shandong Province, China. Energy 2019, 166, 1120–1133. [Google Scholar] [CrossRef]
- Zoellner, J.; Schweizer-Ries, P.; Wemheuer, C. Public acceptance of renewable energies: Results from case studies in Germany. Energy Policy 2008, 36, 4136–4141. [Google Scholar] [CrossRef]
- Carfora, A.; Romano, A.A.; Ronghi, M.; Scandurra, G. Renewable generation across Italian regions: Spillover effects and effectiveness of European Regional Fund. Energy Policy 2017, 102, 132–141. [Google Scholar] [CrossRef]
- Arabatzis, G.; Kyriakopoulos, G.L.; Tsialis, P. Typology of regional units based on RES plants: The case of Greece. Renew. Sustain. Energy Rev. 2017, 78, 1424–1434. [Google Scholar] [CrossRef]
- Balta-Ozkan, N.; Watson, T.; Mocca, E. Spatially uneven development and low carbon transitions: Insights from urban and regional planning. Energy Policy 2015, 85, 500–510. [Google Scholar] [CrossRef] [Green Version]
- Schaffer, A.J.; Brun, S. Beyond the sun—Socioeconomic drivers of the adoption of small-scale photovoltaic installations in Germany. Energy Res. Soc. Sci. 2015, 10, 220–227. [Google Scholar] [CrossRef]
- Directorate-General for Energy. EU Energy in Figures: Statistical Pocketbook 2019; European Commission: Luxembourg, 2019. [Google Scholar]
- Matti, C.; Consoli, D. The emergence of wind energy in Spain: A review of the policy mix. In The Economics of Knowledge, Innovation and Systemic Technology Policy; Crespi, F., Quatraro, F., Eds.; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Adelaja, A.; Hailu, Y.G.; McKeown, C.H.; Tekle, A.T. Effects of renewable energy policies on wind industry development in the US. J. Nat. Resour. Policy Res. 2010, 2, 245–262. [Google Scholar] [CrossRef]
- Dong, C. Feed-in tariff vs. renewable portfolio standard: An empirical test of their relative effectiveness in promoting wind capacity development. Energy Policy 2012, 42, 476–485. [Google Scholar] [CrossRef]
- Zhang, F. A field experiment on the role of socioemotional skills and gender for hiring in Turkey. In How Fit are Feed-in Tariff Policies? Evidence from the European Wind Market; The World Bank: Wasington, DC, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Gavard, C. Carbon price and wind power support in Denmark. Energy Policy 2016, 92, 455–467. [Google Scholar] [CrossRef] [Green Version]
- Hitaj, C.; Loschel, A. The impact of a feed-in tariff on wind power development in Germany. Resour. Energy Econ. 2019, 57, 18–35. [Google Scholar] [CrossRef] [Green Version]
- Del Río, P.; Morán, M.A.T. Analysing the determinants of on-shore wind capacity additions in the EU: An econometric study. Appl. Energy 2012, 95, 12–21. [Google Scholar] [CrossRef]
- Quintana-Rojo, C.; Callejas-Albiñana, F.; Tarancón, M.A.; Del Río, P. Identifying the drivers of wind capacity additions: The case of Spain. A multiequational approach. Energies 2019, 12, 1944. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.-Y.; Alavalapati, J.; Carter, D.R.; Langholtz, M. Is the choice of renewable portfolio standards random? Energy Policy 2007, 35, 5571–5575. [Google Scholar] [CrossRef]
- Liljenfeldt, J.; Pettersson, Ö. Distributional justice in Swedish wind power development—An odds ratio analysis of windmill localization and local residents’ socio-economic characteristics. Energy Policy 2017, 105, 648–657. [Google Scholar] [CrossRef]
- Jacquet, J.B. Landowner attitudes toward natural gas and wind farm development in northern Pennsylvania. Energy Policy 2012, 50, 677–688. [Google Scholar] [CrossRef]
- Cooke, P. Regional innovation systems: Development opportunities from the ‘green turn’. Technol. Anal. Strat. Manag. 2010, 22, 831–844. [Google Scholar] [CrossRef]
- Marra, A.; Antonelli, P.; Pozzi, C. Emerging green-tech specializations and clusters—A network analysis on technological innovation at the metropolitan level. Renew. Sustain. Energy Rev. 2017, 67, 1037–1046. [Google Scholar] [CrossRef]
- Goetzke, F.; Rave, T. Exploring heterogeneous growth of wind energy across Germany. Util. Policy 2016, 41, 193–205. [Google Scholar] [CrossRef]
- Xia, F.; Song, F. The uneven development of wind power in China: Determinants and the role of supporting policies. Energy Econ. 2017, 67, 278–286. [Google Scholar] [CrossRef]
- Del Río, P. Analysing future trends of renewable electricity in the EU in a low-carbon context. Renew. Sustain. Energy Rev. 2011, 15, 2520–2533. [Google Scholar] [CrossRef]
- Klaassen, G.; Miketa, A.; Larsen, K.; Sundqvist, T. The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom. Ecol. Econ. 2005, 54, 227–240. [Google Scholar] [CrossRef]
- Qiu, Y.; Anadon, L.D. The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization. Energy Econ. 2012, 34, 772–785. [Google Scholar] [CrossRef]
- Wene, C.-O. Energy technology learning through deployment in competitive markets. Eng. Econ. 2008, 53, 340–364. [Google Scholar] [CrossRef]
- Rubin, E.S.; Azevedo, I.M.; Jaramillo, P.; Yeh, S. A review of learning rates for electricity supply technologies. Energy Policy 2015, 86, 198–218. [Google Scholar] [CrossRef]
- Griliches, Z. R&D and Productivity; University of Chicago Press: London, UK, 1998. [Google Scholar]
- Söderholm, P.; Klaassen, G. Wind power in Europe: A simultaneous innovation–diffusion model. Environ. Resour. Econ. 2006, 36, 163–190. [Google Scholar] [CrossRef]
- Gonzalez-Aparicio, I.; Zucker, A.; Careri, F.; Monforti, F.; Huld, T.; Badger, J. EMHIRES dataset. Part I: Wind power generation European Meteorological derived High resolution RES generation time series for present and future scenarios. Tech. Rep. 2016. [Google Scholar] [CrossRef]
- Frantál, B.; Kunc, J. Factors of the uneven regional development of wind energy projects (a case of the Czech Republic). Geogr. J. 2010, 62, 183–199. [Google Scholar]
- Rodman, L.C.; Meentemeyer, R.K. A geographic analysis of wind turbine placement in Northern California. Energy Policy 2006, 34, 2137–2149. [Google Scholar] [CrossRef]
- Meyerhoff, J.; Ohl, C.; Hartje, V.; Juergen, M. Landscape externalities from onshore wind power. Energy Policy 2010, 38, 82–92. [Google Scholar] [CrossRef]
- Shivakumar, A.; Dobbins, A.; Fahl, U.; Singh, A. Drivers of renewable energy deployment in the EU: An analysis of past trends and projections. Energy Strat. Rev. 2019, 26, 100402. [Google Scholar] [CrossRef]
- Del Río, P. Designing auctions for renewable electricity support. Best practices from around the world. Energy Sustain. Dev. 2017, 41, 1–13. [Google Scholar] [CrossRef]
- Hausman, J.A. Specification tests in econometrics. Econometrica 1978, 46, 1251. [Google Scholar] [CrossRef] [Green Version]
- Huber, P.J. The behaviour of maximum likelihood estimates under nonstandard conditions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June 1967; University of California Press: Berkeley, CA, USA, 1967; pp. 221–233. [Google Scholar]
- White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 1980, 48, 817. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424. [Google Scholar] [CrossRef]
- Abrigo, M.R.; Love, I. Estimation of panel vector autoregression in stata. Stata J. 2016, 16, 778–804. [Google Scholar] [CrossRef] [Green Version]
- Feurtey, É.; Ilinca, A.; Sakout, A.; Saucier, C. Institutional factors influencing strategic decision-making in energy policy; A case study of wind energy in France and Quebec (Canada). Renew. Sustain. Energy Rev. 2016, 59, 1455–1470. [Google Scholar] [CrossRef]
- Warren, C.R.; McFadyen, M. Does community ownership affect public attitudes to wind energy? A case study from south-west Scotland. Land Use Policy 2010, 27, 204–213. [Google Scholar] [CrossRef]
- Watanabe, C. Systems option for sustainable development-effect and limit of the ministry of international trade and industry’s efforts to substitute technology for energy. Res. Policy 1999, 14, 719–749. [Google Scholar] [CrossRef]
- Wiesenthal, T.; Mercier, A.; Schade, B.; Petric, H.; Dowling, P. A model-based assessment of the impact of revitalised R&D investments on the European power sector. Renew. Sustain. Energy Rev. 2012, 16, 105–112. [Google Scholar] [CrossRef]
- Toke, D.; Breukers, S.; Wolsink, M. Wind power deployment outcomes: How can we account for the differences? Renew. Sustain. Energy Rev. 2008, 12, 1129–1147. [Google Scholar] [CrossRef]
- Buen, J. Danish and Norwegian wind industry: The relationship between policy instruments, innovation and diffusion. Energy Policy 2006, 34, 3887–3897. [Google Scholar] [CrossRef]
- Agterbosch, S.; Glasbergen, P.; Vermeulen, W.J. Social barriers in wind power implementation in The Netherlands: Perceptions of wind power entrepreneurs and local civil servants of institutional and social conditions in realizing wind power projects. Renew. Sustain. Energy Rev. 2007, 11, 1025–1055. [Google Scholar] [CrossRef]
Variable | Description | Source |
---|---|---|
WINDCAP | Installed capacity of wind energy (dependent variable) | Red Eléctrica de España |
TERTIARY | Percentage of population with higher studies | Eurostat |
HIGHTECHEMPLOY | Percentage of the energy sector in regional employment in high tech sectors | Eurostat |
PRIVATE R&D | Private investment in R&D in percentage on regional GDP | Eurostat |
INVESTMENT | Investment in fixed capital per inhabitant. | Eurostat |
METEO | Production of wind energy according to meteorological conditions | EMHIRES |
FARM SIZE | Average size of wind farm | Wind Business Association (AEE) |
DENSITY | Population Density | Eurostat |
CRISIS | Dummy: value 1 in crisis years (2008–2014) | - |
Equation | Excluded | chi2 | df | Prob > chi2 |
---|---|---|---|---|
WINDCAP | TERTIARY | 4.184 | 4 | 0.382 |
HIGHTECHEMPLOY | 0.479 | 4 | 0.976 | |
ALL | 4.974 | 8 | 0.760 | |
TERTIARY | WINDCAP | 3.412 | 4 | 0.491 |
HIGHTECHEMPLOY | 1.157 | 4 | 0.885 | |
ALL | 4.656 | 8 | 0.794 | |
HIGHTECHEMPLOY | WINDCAP | 1.441 | 4 | 0.837 |
TERTIARY | 2.850 | 4 | 0.583 | |
ALL | 5.767 | 8 | 0.673 |
Model 1 | Model 2 | |||||||
---|---|---|---|---|---|---|---|---|
Standardized Beta | S.E. | t-statistic | p-value | Standardized Beta | S. E. | t-statistic | p-value | |
METEO | 0.141 | 0.000 | 1.41 | 0.179 | 0.017 | 0.000 | 0.3 | 0.765 |
FARM SIZE | 0.011 | 0.009 | 0.54 | 0.598 | −0.032 | 0.012 | −1.25 | 0.228 |
TERTIARY | 0.362 | 0.024 | 1.56 | 0.138 | 0.457 * | 0.027 | 1.75 | 0.1 |
HIGHTECHEMPLOY | −0.456 ** | 0.069 | −2.18 | 0.044 | −0.441 ** | 0.059 | −2.5 | 0.024 |
INVESTMENT | 0.171 | 0.086 | 1.18 | 0.255 | 0.167 | 0.088 | 1.13 | 0.276 |
INVESTMENT (T-1) | - | - | - | - | 0.009 | 0.047 | 0.11 | 0.912 |
INVESTMENT (T-2) | - | - | - | - | 0.105 * | 0.033 | 1.89 | 0.077 |
PRIVATE R&D | 0.746 * | 2.899 | 1.89 | 0.077 | 0.424 * | 1.626 | 1.92 | 0.073 |
PRIVATE R&D (T-1) | - | - | - | - | 0.147 ** | 0.407 | 2.66 | 0.017 |
PRIVATE R&D (T-2) | - | - | - | - | 0.110 | 0.581 | 1.4 | 0.181 |
DENSITY | −0.613 | 0.015 | −0.83 | 0.421 | −1.038 * | 0.012 | −1.73 | 0.102 |
CRISIS | 0.140 | 0.150 | 0.93 | 0.366 | 0.057 | 0.063 | 0.91 | 0.377 |
R WITHIN | 0.4937 | - | - | - | 0.5231 | - | - | - |
R BETWEEN | 0.1127 | - | - | - | 0.1974 | - | - | - |
AIC | 340.2589 | - | - | - | 141.3699 | - | - | - |
BIC | 366.0649 | - | - | - | 177.6565 | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Pedrero, M.-J.; Ruiz-Fuensanta, M.J.; Tarancón, M.-Á. Regional Factors Driving the Deployment of Wind Energy in Spain. Energies 2020, 13, 3590. https://doi.org/10.3390/en13143590
Gutiérrez-Pedrero M-J, Ruiz-Fuensanta MJ, Tarancón M-Á. Regional Factors Driving the Deployment of Wind Energy in Spain. Energies. 2020; 13(14):3590. https://doi.org/10.3390/en13143590
Chicago/Turabian StyleGutiérrez-Pedrero, María-Jesús, María J. Ruiz-Fuensanta, and Miguel-Ángel Tarancón. 2020. "Regional Factors Driving the Deployment of Wind Energy in Spain" Energies 13, no. 14: 3590. https://doi.org/10.3390/en13143590
APA StyleGutiérrez-Pedrero, M.-J., Ruiz-Fuensanta, M. J., & Tarancón, M.-Á. (2020). Regional Factors Driving the Deployment of Wind Energy in Spain. Energies, 13(14), 3590. https://doi.org/10.3390/en13143590