Regional Factors Driving the Deployment of Wind Energy in Spain
Abstract
1. Introduction
2. Methodology and Data
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Framework Strategy for a Resilient Energy Union with a Forward-Looking Climate Change Policy; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Policy Framework for Climate and Energy in the Period from 2020 to 2030; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Del Río, P.; Resch, G.; Ortner, A.; Liebmann, L.; Busch, S.; Panzer, C. A techno-economic analysis of EU renewable electricity policy pathways in 2030. Energy Policy 2017, 104, 484–493. [Google Scholar] [CrossRef]
- Carley, S.; Baldwin, E.; MacLean, L.M.; Brass, J.N. Global expansion of renewable energy generation: An analysis of policy instruments. Environ. Resour. Econ. 2016, 68, 397–440. [Google Scholar] [CrossRef]
- Kilinc-Ata, N. The evaluation of renewable energy policies across EU countries and US states: An econometric approach. Energy Sustain. Dev. 2016, 31, 83–90. [Google Scholar] [CrossRef]
- Polzin, F.; Migendt, M.; Täube, F.A.; Von Flotow, P. Public policy influence on renewable energy investments—A panel data study across OECD countries. Energy Policy 2015, 80, 98–111. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Manso, J.R.P. Motivations driving renewable energy in European countries: A panel data approach. Energy Policy 2010, 38, 6877–6885. [Google Scholar] [CrossRef]
- Aguirre, M.; Ibikunle, G. Determinants of renewable energy growth: A global sample analysis. Energy Policy 2014, 69, 374–384. [Google Scholar] [CrossRef]
- Quintana-Rojo, C.; Callejas-Albiñana, F.E.; Tarancón, M.A.; Del Río, P. Assessing the feasibility of deployment policies in wind energy systems. A sensitivity analysis on a multiequational econometric framework. Energy Econ. 2020, 86, 104688. [Google Scholar] [CrossRef]
- Dalmazzone, S.; Corsatea, T.D. A regional analysis of renewable energy patenting in Italy. SSRN Electron. J. 2012. [Google Scholar] [CrossRef]
- Ministry for the Ecological Transition. Plan Nacional Integrado de Energía y Clima PNIEC; Spanish Goverment: Madrid, Spain, 2020.
- United Nations. United Nations Framework Convention on Climate Change, Paris Agreement; United Nations: Paris, France, 2015. [Google Scholar]
- European Environment Agency. Unequal Exposure and Unequal Impacts: Social Vulnerability to Air Pollution, Noise and Extreme Temperatures in Europe, EEA Report 22/2018; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Ivanova, D.; Vita, G.; Steen-Olsen, K.; Stadler, K.; Melo, P.C.; Wood, R.; Hertwich, E. Mapping the carbon footprint of EU regions. Environ. Res. Lett. 2017, 12, 054013. [Google Scholar] [CrossRef]
- Mattes, J.; Huber, A.; Koehrsen, J. Energy transitions in small-scale regions – What we can learn from a regional innovation systems perspective. Energy Policy 2015, 78, 255–264. [Google Scholar] [CrossRef]
- Ghilardi, A.; Guerrero, G.; Masera, O. A GIS-based methodology for highlighting fuelwood supply/demand imbalances at the local level: A case study for Central Mexico. Biomass Bioenergy 2009, 33, 957–972. [Google Scholar] [CrossRef]
- Calvert, K.; Pearce, J.M.; Mabee, W. Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity. Renew. Sustain. Energy Rev. 2013, 18, 416–429. [Google Scholar] [CrossRef]
- Palmas, C.; Siewert, A.; Von Haaren, C. Exploring the decision-space for renewable energy generation to enhance spatial efficiency. Environ. Impact Assess. Rev. 2015, 52, 9–17. [Google Scholar] [CrossRef]
- Faulin, J.; Lera, F.; Pintor, J.M.; García, J.; Lera-López, F. The outlook for renewable energy in Navarre: An economic profile. Energy Policy 2006, 34, 2201–2216. [Google Scholar] [CrossRef]
- Jenniches, S. Assessing the regional economic impacts of renewable energy sources—A literature review. Renew. Sustain. Energy Rev. 2018, 93, 35–51. [Google Scholar] [CrossRef]
- Ejdemo, T.; Söderholm, P. Wind power, regional development and benefit-sharing: The case of Northern Sweden. Renew. Sustain. Energy Rev. 2015, 47, 476–485. [Google Scholar] [CrossRef]
- Del Río, P.; Burguillo, M. An empirical analysis of the impact of renewable energy deployment on local sustainability. Renew. Sustain. Energy Rev. 2009, 13, 1314–1325. [Google Scholar] [CrossRef]
- Cuartas, B.M.; López-Menéndez, A. The effect of renewable energy on employment. The case of Asturias (Spain). Renew. Sustain. Energy Rev. 2008, 12, 732–751. [Google Scholar] [CrossRef]
- Asociación de Empresas de Energías Renovables APPA. Estudio del Impacto Macroeconómico de las Energías Renovables en España: 2018; APPA: Madrid, Spain, 2019; Available online: https://www.appa.es/wp-content/uploads/2019/10/Estudio_del_impacto_Macroeconomico_de_las_energias_renovables_en_Espa%C3%B1a_2018_vff.pdf (accessed on 6 January 2020).
- Horbach, J.; Rammer, C. Energy transition in Germany and regional spill-overs: The diffusion of renewable energy in firms. Energy Policy 2018, 121, 404–414. [Google Scholar] [CrossRef]
- Noailly, J.; Shestalova, V. Knowledge spillovers from renewable energy technologies: Lessons from patent citations. Environ. Innov. Soc. Transitions 2017, 22, 1–14. [Google Scholar] [CrossRef]
- Bulkeley, H. Reconfiguring environmental governance: Towards a politics of scales and networks. Political Geogr. 2005, 24, 875–902. [Google Scholar] [CrossRef]
- Coelho, S.; Russo, M.A.; Oliveira, R.; Monteiro, A.; Lopes, M.; Borrego, C. Sustainable energy action plans at city level: A Portuguese experience and perception. J. Clean. Prod. 2018, 176, 1223–1230. [Google Scholar] [CrossRef]
- Coutard, O.; Rutherford, J. Energy transition and city-region planning: Understanding the spatial politics of systemic change. Technol. Anal. Strat. Manag. 2010, 22, 711–727. [Google Scholar] [CrossRef]
- Dehghan, A.A. Status and potentials of renewable energies in Yazd Province-Iran. Renew. Sustain. Energy Rev. 2011, 15, 1491–1496. [Google Scholar] [CrossRef]
- Monstadt, J. Urban governance and the transition of energy systems: Institutional change and shifting energy and climate policies in Berlin. Int. J. Urban Reg. Res. 2007, 31, 326–343. [Google Scholar] [CrossRef]
- Yu, L.; Li, Y.; Huang, G. Planning municipal-scale mixed energy system for stimulating renewable energy under multiple uncertainties—The city of Qingdao in Shandong Province, China. Energy 2019, 166, 1120–1133. [Google Scholar] [CrossRef]
- Zoellner, J.; Schweizer-Ries, P.; Wemheuer, C. Public acceptance of renewable energies: Results from case studies in Germany. Energy Policy 2008, 36, 4136–4141. [Google Scholar] [CrossRef]
- Carfora, A.; Romano, A.A.; Ronghi, M.; Scandurra, G. Renewable generation across Italian regions: Spillover effects and effectiveness of European Regional Fund. Energy Policy 2017, 102, 132–141. [Google Scholar] [CrossRef]
- Arabatzis, G.; Kyriakopoulos, G.L.; Tsialis, P. Typology of regional units based on RES plants: The case of Greece. Renew. Sustain. Energy Rev. 2017, 78, 1424–1434. [Google Scholar] [CrossRef]
- Balta-Ozkan, N.; Watson, T.; Mocca, E. Spatially uneven development and low carbon transitions: Insights from urban and regional planning. Energy Policy 2015, 85, 500–510. [Google Scholar] [CrossRef]
- Schaffer, A.J.; Brun, S. Beyond the sun—Socioeconomic drivers of the adoption of small-scale photovoltaic installations in Germany. Energy Res. Soc. Sci. 2015, 10, 220–227. [Google Scholar] [CrossRef]
- Directorate-General for Energy. EU Energy in Figures: Statistical Pocketbook 2019; European Commission: Luxembourg, 2019. [Google Scholar]
- Matti, C.; Consoli, D. The emergence of wind energy in Spain: A review of the policy mix. In The Economics of Knowledge, Innovation and Systemic Technology Policy; Crespi, F., Quatraro, F., Eds.; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Adelaja, A.; Hailu, Y.G.; McKeown, C.H.; Tekle, A.T. Effects of renewable energy policies on wind industry development in the US. J. Nat. Resour. Policy Res. 2010, 2, 245–262. [Google Scholar] [CrossRef]
- Dong, C. Feed-in tariff vs. renewable portfolio standard: An empirical test of their relative effectiveness in promoting wind capacity development. Energy Policy 2012, 42, 476–485. [Google Scholar] [CrossRef]
- Zhang, F. A field experiment on the role of socioemotional skills and gender for hiring in Turkey. In How Fit are Feed-in Tariff Policies? Evidence from the European Wind Market; The World Bank: Wasington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Gavard, C. Carbon price and wind power support in Denmark. Energy Policy 2016, 92, 455–467. [Google Scholar] [CrossRef]
- Hitaj, C.; Loschel, A. The impact of a feed-in tariff on wind power development in Germany. Resour. Energy Econ. 2019, 57, 18–35. [Google Scholar] [CrossRef]
- Del Río, P.; Morán, M.A.T. Analysing the determinants of on-shore wind capacity additions in the EU: An econometric study. Appl. Energy 2012, 95, 12–21. [Google Scholar] [CrossRef]
- Quintana-Rojo, C.; Callejas-Albiñana, F.; Tarancón, M.A.; Del Río, P. Identifying the drivers of wind capacity additions: The case of Spain. A multiequational approach. Energies 2019, 12, 1944. [Google Scholar] [CrossRef]
- Huang, M.-Y.; Alavalapati, J.; Carter, D.R.; Langholtz, M. Is the choice of renewable portfolio standards random? Energy Policy 2007, 35, 5571–5575. [Google Scholar] [CrossRef]
- Liljenfeldt, J.; Pettersson, Ö. Distributional justice in Swedish wind power development—An odds ratio analysis of windmill localization and local residents’ socio-economic characteristics. Energy Policy 2017, 105, 648–657. [Google Scholar] [CrossRef]
- Jacquet, J.B. Landowner attitudes toward natural gas and wind farm development in northern Pennsylvania. Energy Policy 2012, 50, 677–688. [Google Scholar] [CrossRef]
- Cooke, P. Regional innovation systems: Development opportunities from the ‘green turn’. Technol. Anal. Strat. Manag. 2010, 22, 831–844. [Google Scholar] [CrossRef]
- Marra, A.; Antonelli, P.; Pozzi, C. Emerging green-tech specializations and clusters—A network analysis on technological innovation at the metropolitan level. Renew. Sustain. Energy Rev. 2017, 67, 1037–1046. [Google Scholar] [CrossRef]
- Goetzke, F.; Rave, T. Exploring heterogeneous growth of wind energy across Germany. Util. Policy 2016, 41, 193–205. [Google Scholar] [CrossRef]
- Xia, F.; Song, F. The uneven development of wind power in China: Determinants and the role of supporting policies. Energy Econ. 2017, 67, 278–286. [Google Scholar] [CrossRef]
- Del Río, P. Analysing future trends of renewable electricity in the EU in a low-carbon context. Renew. Sustain. Energy Rev. 2011, 15, 2520–2533. [Google Scholar] [CrossRef]
- Klaassen, G.; Miketa, A.; Larsen, K.; Sundqvist, T. The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom. Ecol. Econ. 2005, 54, 227–240. [Google Scholar] [CrossRef]
- Qiu, Y.; Anadon, L.D. The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization. Energy Econ. 2012, 34, 772–785. [Google Scholar] [CrossRef]
- Wene, C.-O. Energy technology learning through deployment in competitive markets. Eng. Econ. 2008, 53, 340–364. [Google Scholar] [CrossRef]
- Rubin, E.S.; Azevedo, I.M.; Jaramillo, P.; Yeh, S. A review of learning rates for electricity supply technologies. Energy Policy 2015, 86, 198–218. [Google Scholar] [CrossRef]
- Griliches, Z. R&D and Productivity; University of Chicago Press: London, UK, 1998. [Google Scholar]
- Söderholm, P.; Klaassen, G. Wind power in Europe: A simultaneous innovation–diffusion model. Environ. Resour. Econ. 2006, 36, 163–190. [Google Scholar] [CrossRef]
- Gonzalez-Aparicio, I.; Zucker, A.; Careri, F.; Monforti, F.; Huld, T.; Badger, J. EMHIRES dataset. Part I: Wind power generation European Meteorological derived High resolution RES generation time series for present and future scenarios. Tech. Rep. 2016. [Google Scholar] [CrossRef]
- Frantál, B.; Kunc, J. Factors of the uneven regional development of wind energy projects (a case of the Czech Republic). Geogr. J. 2010, 62, 183–199. [Google Scholar]
- Rodman, L.C.; Meentemeyer, R.K. A geographic analysis of wind turbine placement in Northern California. Energy Policy 2006, 34, 2137–2149. [Google Scholar] [CrossRef]
- Meyerhoff, J.; Ohl, C.; Hartje, V.; Juergen, M. Landscape externalities from onshore wind power. Energy Policy 2010, 38, 82–92. [Google Scholar] [CrossRef]
- Shivakumar, A.; Dobbins, A.; Fahl, U.; Singh, A. Drivers of renewable energy deployment in the EU: An analysis of past trends and projections. Energy Strat. Rev. 2019, 26, 100402. [Google Scholar] [CrossRef]
- Del Río, P. Designing auctions for renewable electricity support. Best practices from around the world. Energy Sustain. Dev. 2017, 41, 1–13. [Google Scholar] [CrossRef]
- Hausman, J.A. Specification tests in econometrics. Econometrica 1978, 46, 1251. [Google Scholar] [CrossRef]
- Huber, P.J. The behaviour of maximum likelihood estimates under nonstandard conditions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June 1967; University of California Press: Berkeley, CA, USA, 1967; pp. 221–233. [Google Scholar]
- White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 1980, 48, 817. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424. [Google Scholar] [CrossRef]
- Abrigo, M.R.; Love, I. Estimation of panel vector autoregression in stata. Stata J. 2016, 16, 778–804. [Google Scholar] [CrossRef]
- Feurtey, É.; Ilinca, A.; Sakout, A.; Saucier, C. Institutional factors influencing strategic decision-making in energy policy; A case study of wind energy in France and Quebec (Canada). Renew. Sustain. Energy Rev. 2016, 59, 1455–1470. [Google Scholar] [CrossRef]
- Warren, C.R.; McFadyen, M. Does community ownership affect public attitudes to wind energy? A case study from south-west Scotland. Land Use Policy 2010, 27, 204–213. [Google Scholar] [CrossRef]
- Watanabe, C. Systems option for sustainable development-effect and limit of the ministry of international trade and industry’s efforts to substitute technology for energy. Res. Policy 1999, 14, 719–749. [Google Scholar] [CrossRef]
- Wiesenthal, T.; Mercier, A.; Schade, B.; Petric, H.; Dowling, P. A model-based assessment of the impact of revitalised R&D investments on the European power sector. Renew. Sustain. Energy Rev. 2012, 16, 105–112. [Google Scholar] [CrossRef]
- Toke, D.; Breukers, S.; Wolsink, M. Wind power deployment outcomes: How can we account for the differences? Renew. Sustain. Energy Rev. 2008, 12, 1129–1147. [Google Scholar] [CrossRef]
- Buen, J. Danish and Norwegian wind industry: The relationship between policy instruments, innovation and diffusion. Energy Policy 2006, 34, 3887–3897. [Google Scholar] [CrossRef]
- Agterbosch, S.; Glasbergen, P.; Vermeulen, W.J. Social barriers in wind power implementation in The Netherlands: Perceptions of wind power entrepreneurs and local civil servants of institutional and social conditions in realizing wind power projects. Renew. Sustain. Energy Rev. 2007, 11, 1025–1055. [Google Scholar] [CrossRef]
Variable | Description | Source |
---|---|---|
WINDCAP | Installed capacity of wind energy (dependent variable) | Red Eléctrica de España |
TERTIARY | Percentage of population with higher studies | Eurostat |
HIGHTECHEMPLOY | Percentage of the energy sector in regional employment in high tech sectors | Eurostat |
PRIVATE R&D | Private investment in R&D in percentage on regional GDP | Eurostat |
INVESTMENT | Investment in fixed capital per inhabitant. | Eurostat |
METEO | Production of wind energy according to meteorological conditions | EMHIRES |
FARM SIZE | Average size of wind farm | Wind Business Association (AEE) |
DENSITY | Population Density | Eurostat |
CRISIS | Dummy: value 1 in crisis years (2008–2014) | - |
Equation | Excluded | chi2 | df | Prob > chi2 |
---|---|---|---|---|
WINDCAP | TERTIARY | 4.184 | 4 | 0.382 |
HIGHTECHEMPLOY | 0.479 | 4 | 0.976 | |
ALL | 4.974 | 8 | 0.760 | |
TERTIARY | WINDCAP | 3.412 | 4 | 0.491 |
HIGHTECHEMPLOY | 1.157 | 4 | 0.885 | |
ALL | 4.656 | 8 | 0.794 | |
HIGHTECHEMPLOY | WINDCAP | 1.441 | 4 | 0.837 |
TERTIARY | 2.850 | 4 | 0.583 | |
ALL | 5.767 | 8 | 0.673 |
Model 1 | Model 2 | |||||||
---|---|---|---|---|---|---|---|---|
Standardized Beta | S.E. | t-statistic | p-value | Standardized Beta | S. E. | t-statistic | p-value | |
METEO | 0.141 | 0.000 | 1.41 | 0.179 | 0.017 | 0.000 | 0.3 | 0.765 |
FARM SIZE | 0.011 | 0.009 | 0.54 | 0.598 | −0.032 | 0.012 | −1.25 | 0.228 |
TERTIARY | 0.362 | 0.024 | 1.56 | 0.138 | 0.457 * | 0.027 | 1.75 | 0.1 |
HIGHTECHEMPLOY | −0.456 ** | 0.069 | −2.18 | 0.044 | −0.441 ** | 0.059 | −2.5 | 0.024 |
INVESTMENT | 0.171 | 0.086 | 1.18 | 0.255 | 0.167 | 0.088 | 1.13 | 0.276 |
INVESTMENT (T-1) | - | - | - | - | 0.009 | 0.047 | 0.11 | 0.912 |
INVESTMENT (T-2) | - | - | - | - | 0.105 * | 0.033 | 1.89 | 0.077 |
PRIVATE R&D | 0.746 * | 2.899 | 1.89 | 0.077 | 0.424 * | 1.626 | 1.92 | 0.073 |
PRIVATE R&D (T-1) | - | - | - | - | 0.147 ** | 0.407 | 2.66 | 0.017 |
PRIVATE R&D (T-2) | - | - | - | - | 0.110 | 0.581 | 1.4 | 0.181 |
DENSITY | −0.613 | 0.015 | −0.83 | 0.421 | −1.038 * | 0.012 | −1.73 | 0.102 |
CRISIS | 0.140 | 0.150 | 0.93 | 0.366 | 0.057 | 0.063 | 0.91 | 0.377 |
R WITHIN | 0.4937 | - | - | - | 0.5231 | - | - | - |
R BETWEEN | 0.1127 | - | - | - | 0.1974 | - | - | - |
AIC | 340.2589 | - | - | - | 141.3699 | - | - | - |
BIC | 366.0649 | - | - | - | 177.6565 | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Pedrero, M.-J.; Ruiz-Fuensanta, M.J.; Tarancón, M.-Á. Regional Factors Driving the Deployment of Wind Energy in Spain. Energies 2020, 13, 3590. https://doi.org/10.3390/en13143590
Gutiérrez-Pedrero M-J, Ruiz-Fuensanta MJ, Tarancón M-Á. Regional Factors Driving the Deployment of Wind Energy in Spain. Energies. 2020; 13(14):3590. https://doi.org/10.3390/en13143590
Chicago/Turabian StyleGutiérrez-Pedrero, María-Jesús, María J. Ruiz-Fuensanta, and Miguel-Ángel Tarancón. 2020. "Regional Factors Driving the Deployment of Wind Energy in Spain" Energies 13, no. 14: 3590. https://doi.org/10.3390/en13143590
APA StyleGutiérrez-Pedrero, M.-J., Ruiz-Fuensanta, M. J., & Tarancón, M.-Á. (2020). Regional Factors Driving the Deployment of Wind Energy in Spain. Energies, 13(14), 3590. https://doi.org/10.3390/en13143590