Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine
Abstract
:1. Introduction
- a machine learning and deep learning-based model is proposed, i.e., Extreme Learning Machine based Genetic Algorithm (ELM-GA) and Support Vector Machine based Grid Search (SVM-GS),
- the hyperparameter values are tuned using an optimization algorithm to obtain maximum accuracy,
- DT, XGboost and RFE are used in the feature engineering process for removing the redundancy and cleaning the data,
- the GA and GS optimization algorithms are applied to the ELM and SVM to calculate the optimum hyperparameter values.
2. Related Work
3. Problem Statement and Motivation
4. Proposed Model
4.1. Dataset
4.2. Feature Engineering
4.3. Classification and Forecasting
5. Simulation Setup
Performance Evaluation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TGs | Traditional Grids |
SG | Smart Grid |
SMs | Smart Meters |
SVM | Support Vector Machine |
RBM | Restricted Boltzmann Machine |
ReLU | Rectified Linear Unit |
DLSTM | Deep Long Short-Term Memory |
DAEs | Deep Auto Encoders |
GRU | Gated Recurrent Units |
CNN | Convolutional Neural Network |
ISO NE | Independent System Operator New England |
SOTA | State Of The Art |
ELM | Extreme Learning Machine |
GS | Grid Search |
NN | Neural Network |
MAPE | Mean Average Percentage Error |
RFE | Redundancy removal using Feature Extraction |
RMSE | Root Mean Square Error |
References
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid—The new and improved power grid: A survey. IEEE Commun. Surv. Tutorials 2011, 14, 944–980. [Google Scholar] [CrossRef]
- Samadi, P.; Wong, V.W.; Schober, R. Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 2015, 7, 1802–1812. [Google Scholar] [CrossRef]
- Zhao, Z.; Lee, W.C.; Shin, Y.; Song, K.B. An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 2013, 4, 1391–1400. [Google Scholar] [CrossRef]
- Davito, B.; Tai, H.; Uhlaner, R. The smart grid and the promise of demand-side management. McKinsey Smart Grid 2010, 3, 8–44. [Google Scholar]
- Liu, Y. Wireless sensor network applications in smart grid: Recent trends and challenges. Int. J. Distrib. Sens. Networks 2012, 8, 492819. [Google Scholar] [CrossRef]
- Siano, P.; Sarno, D. Assessing the benefits of residential demand response in a real time distribution energy market. Applied Energy 2016, 161, 533–551. [Google Scholar] [CrossRef]
- Aghaei, J.; Alizadeh, M.I. Demand response in smart electricity grids equipped with renewable energy sources: A review. Renew. Sustain. Energy Rev. 2013, 18, 64–72. [Google Scholar] [CrossRef]
- Paterakis, N.G.; Erdinc, O.; Catalao, J.P. An overview of Demand Response: Key-elements and international experience. Renewable and Sustainable Energy Reviews. Renew. Sustain. Energy Rev. 2017, 69, 871–891. [Google Scholar] [CrossRef]
- Pinson, P.; Madsen, H. Benefits and challenges of electrical demand response: A critical review. Renew. Sustain. Energy Rev. 2014, 39, 686–699. [Google Scholar]
- Tabar, V.S.; Jirdehi, M.A.; Hemmati, R. Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option. Energy 2017, 118, 827–839. [Google Scholar] [CrossRef]
- Zheng, J.; Gao, D.W.; Lin, L. Smart meters in smart grid: An overview. In Proceedings of the 2013 IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 4–5 April 2013; pp. 57–64. [Google Scholar]
- Bessa, R.J. Solar power forecasting for smart grids considering ICT constraints. In Proceedings of the 4th Solar Integration Workshop, Berlin, Germany, 10–11 November 2014. [Google Scholar]
- Huang, S.J.; Shih, K.R. Short-term load forecasting via ARMA model identification including non-Gaussian process considerations. IEEE Trans. Power Syst. 2003, 18, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Kandil, N.; Wamkeue, R.; Saad, M.; Georges, S. An efficient approach for shorterm load forecasting using artificial neural networks. In Proceedings of the 2006 IEEE International Symposium on Industrial Electronics, Montreal, QC, Canada, 9–13 July 2006; Volume 3, pp. 1928–1932. [Google Scholar]
- Mandal, P.; Senjyu, T.; Urasaki, N.; Funabashi, T. A neural network based several-hour-ahead electric load forecasting using similar days approach. Int. J. Electr. Power Energy Syst. 2006, 28, 367–373. [Google Scholar] [CrossRef]
- Topalli, A.K.; Erkmen, I.; Topalli, I. Intelligent short-term load forecasting in Turkey. Int. J. Electr. Power Energy Syst. 2006, 28, 437–447. [Google Scholar] [CrossRef]
- Mu, Q.; Wu, Y.; Pan, X.; Huang, L.; Li, X. Short-term load forecasting using improved similar days method. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–4. [Google Scholar]
- Wang, J.M.; Wang, L.P. A new method for short-term electricity load forecasting. Trans. Inst. Meas. Control 2008, 30, 331–344. [Google Scholar] [CrossRef]
- Ruzic, S.; Vuckovic, A.; Nikolic, N. Weather sensitive method for short term load forecasting in electric power utility of Serbia. IEEE Trans. Power Syst. 2003, 18, 1581–1586. [Google Scholar] [CrossRef]
- Haida, T.; Muto, S. Regression based peak load forecasting using a transformation technique. IEEE Trans. Power Syst. 1994, 9, 1788–1794. [Google Scholar] [CrossRef]
- Charytoniuk, W.; Chen, M.S.; Van Olinda, P. Nonparametric regression based short-term load forecasting. IEEE Trans. Power Syst. 1998, 13, 725–730. [Google Scholar] [CrossRef]
- Amjady, N. Short-term hourly load forecasting using time-series modeling with peak load estimation capability. IEEE Trans. Power Syst. 2001, 16, 498–505. [Google Scholar] [CrossRef]
- Park, D.C.; El-Sharkawi, M.A.; Marks, R.J.; Atlas, L.E.; Damborg, M.J. Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst. 1991, 6, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Kandil, M.S.; El-Debeiky, S.M.; Hasanien, N.E. Long-term load forecasting for fast developing utility using a knowledge-based expert system. IEEE Trans. Power Syst. 2002, 17, 491–496. [Google Scholar] [CrossRef]
- Mohandes, M. Support vector machines for short-term electrical load forecasting. Int. J. Energy Res. 2002, 26, 335–345. [Google Scholar] [CrossRef]
- Ayub, N.; Javaid, N.; Mujeeb, S.; Zahid, M.; Khan, W.Z.; Khattak, M.U. Electricity Load Forecasting in Smart Grids Using Support Vector Machine. In Proceedings of the 33rd International Conference on Advanced Information Networking and Applications, Matsue, Japan, 27–29 March 2019; Volume 926, pp. 1–13. [Google Scholar]
- Chu, W.; Keerthi, S.S.; Ong, C.J. A general formulation for support vector machines. In Proceedings of the 9th International Conference on Neural Information Processing, Singapore, I8–22 November 2002; Volume 5, pp. 2522–2526. [Google Scholar]
- Kumar, V.; Pal, S. A Literature Survey of Load Forecasting Methods and Impact of Different Factors on Load Forecasting. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 469–472. [Google Scholar] [CrossRef]
- Salkuti, S.R. Short-term electrical load forecasting using radial basis function neural networks considering weather factors. Electr. Eng. 2018, 100, 1985–1995. [Google Scholar] [CrossRef]
- Aggarwal, S.K.; Saini, L.M.; Kumar, A. Electricity price forecasting in deregulated markets: A review and evaluation. Int. J. Electr. Power Energy Syst. 2009, 31, 13–22. [Google Scholar] [CrossRef]
- Ahmad, A.; Javaid, N.; Mateen, A.; Awais, M.; Khan, Z.A. Short-term load forecasting in smart grids: An intelligent modular approach. Energies 2019, 12, 164. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Xu, C.; Zhang, Y.; Guo, S.; Zomaya, A.Y. Robust big data analytics for electricity price forecasting in the smart grid. IEEE Trans. Big Data 2017, 5, 34–45. [Google Scholar] [CrossRef]
- Mujeeb, S.; Javaid, N.; Ilahi, M.; Wadud, Z.; Ishmanov, F.; Afzal, M.K. Deep long short-term memory: A new price and load forecasting scheme for big data in smart cities. Sustainability 2019, 11, 987. [Google Scholar] [CrossRef] [Green Version]
- Zahid, M.; Ahmed, F.; Javaid, N.; Abbasi, R.A.; Kazmi, Z.; Syeda, H.; Javaid, A.; Bilal, M.; Akbar, M.; Ilahi, M. Electricity price and load forecasting using enhanced convolutional neural network and enhanced support vector regression in smart grids. Electronics 2019, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Xiao, F.; Zhao, Y. A short-term building cooling load prediction method using deep learning algorithms. Appl. Energy 2017, 195, 222–233. [Google Scholar] [CrossRef]
- Khan, Z.A.; Zafar, A.; Javaid, S.; Aslam, S.; Rahim, M.H.; Javaid, N. Hybrid meta-heuristic optimization based home energy management system in smart grid. J. Ambient Intell. Humaniz. Comput. 2019, 10, 4837–4853. [Google Scholar] [CrossRef]
- Moghaddass, R.; Wang, J. A hierarchical framework for smart grid anomaly detection using large-scale smart meter data. IEEE Trans. Smart Grid 2017, 9, 5820–5830. [Google Scholar] [CrossRef]
- Samuel, O.; Javaid, S.; Javaid, N.; Ahmed, S.H.; Afzal, M.K.; Ishmanov, F. An efficient power scheduling in smart homes using Jaya based optimization with time-of-use and critical peak pricing schemes. Energies 2018, 11, 3155. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.; Noh, J.; Kim, H. Deep neural network based demand side short term load forecasting. Energies 2017, 10, 3. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Z.; Li, X. Electricity price forecasting with effective feature preprocessing. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006. [Google Scholar]
- Javaid, N.; Ahmed, A.; Iqbal, S.; Ashraf, M. Day ahead real time pricing and critical peak pricing based power scheduling for smart homes with different duty cycles. Energies 2018, 11, 1464. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.; Ranzi, G.; Wan, C.; Xu, Z.; Dong, Z.Y. A multistage home energy management system with residential photovoltaic penetration. IEEE Trans. Ind. Inform. 2018, 15, 116–126. [Google Scholar] [CrossRef]
- Khalid, R.; Javaid, N.; Rahim, M.H.; Aslam, S.; Sher, A. Fuzzy energy management controller and scheduler for smart homes. Sustain. Comput. Inform. Syst. 2019, 21, 103–118. [Google Scholar] [CrossRef]
- Ertugrul, Ö.F. Forecasting electricity load by a novel recurrent extreme learning machines approach. Int. J. Electr. Power Energy Syst. 2016, 78, 429–435. [Google Scholar] [CrossRef]
- Khan, M.A.; Javaid, N.; Mahmood, A.; Khan, Z.A.; Alrajeh, N. A generic demand-side management model for smart grid. Int. J. Energy Res. 2015, 39, 954–964. [Google Scholar] [CrossRef]
- Bilalli, B.; Abelló, A.; Aluja-Banet, T.; Wrembel, R. Intelligent assistance for data pre-processing. Comput. Stand. Interfaces 2018, 57, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Fallah, S.N.; Deo, R.C.; Shojafar, M.; Conti, M.; Shamshirb, S. Computational intelligence approaches for energy load forecasting in smart energy management grids: State of the art, future challenges, and research directions. Energies 2018, 11, 596. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Rojas-Domínguez, A.; Padierna, L.C.; Valadez, J.M.C.; Puga-Soberanes, H.J.; Fraire, H.J. Optimal hyper-parameter tuning of SVM classifiers with application to medical diagnosis. IEEE Access 2017, 6, 7164–7176. [Google Scholar] [CrossRef]
- Li, Z.L.; Xia, J.; Liu, A.; Li, P. States prediction for solar power and wind speed using BBA-SVM. IET Renew. Power Gener. 2019, 13, 1115–1122. [Google Scholar] [CrossRef]
- Morley, S.K.; Brito, T.V.; Welling, D.T. Measures of model performance based on the log accuracy ratio. Space Weather 2018, 16, 69–88. [Google Scholar] [CrossRef]
Target Feature | Features | Short Name | Dimension |
---|---|---|---|
System Load | |||
Day-Ahead Cleared Demand | DA_Demand | TRUE | |
Regulation Market Service clearing price | Reg_Capacity_Price | TRUE | |
Real-Time Demand | RT_Demand | TRUE | |
The dewpoint temperature | Dew_Point | FALSE | |
Day-Ahead Locational Marginal Price | DA_LMP | FALSE | |
The dry-bulb temperature | Dry_Bulb | FALSE | |
Energy Component of Day-Ahead | DA_EC | FALSE | |
Marginal Loss Component of Real-Time | RT_MLC | FALSE | |
Congestion Component of Day-Ahead | DA_CC | FALSE | |
Congestion Component of Real-Time | RT_CC | FALSE | |
Marginal Loss Component of Day-Ahead | DA_MLC | FALSE | |
Energy Component of Real-Time | RT_EC | TRUE | |
Real-Time Locational Marginal Price | RT_LMP | TRUE | |
Regulation Market Capacity clearing | Reg_Service_Price | FALSE |
Techniques | Accuracy | Performance Metrics | |||
---|---|---|---|---|---|
MAPE | RMSE | MSE | MAE | ||
ELM-GA | 96.42% | 2.58 | 737.35 | 5.44 | 4.39 |
SVM-GS | 93.25% | 6.75 | 1811.95 | 32.83 | 10.95 |
LG | 86.14% | 13.86 | 2918.49 | 85.18 | 22.1 |
LM | 84.88% | 15.12 | 3030.06 | 91.81 | 24.46 |
LDA | 84.9% | 15.1 | 3028.09 | 91.69 | 24.44 |
ELM | 89.23% | 10.77 | 2014.66 | 40.59 | 16.12 |
SVM | 85.31% | 14.69 | 3034.03 | 92.05 | 22.75 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, W.; Ayub, N.; Ali, T.; Irfan, M.; Awais, M.; Shiraz, M.; Glowacz, A. Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine. Energies 2020, 13, 2907. https://doi.org/10.3390/en13112907
Ahmad W, Ayub N, Ali T, Irfan M, Awais M, Shiraz M, Glowacz A. Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine. Energies. 2020; 13(11):2907. https://doi.org/10.3390/en13112907
Chicago/Turabian StyleAhmad, Waqas, Nasir Ayub, Tariq Ali, Muhammad Irfan, Muhammad Awais, Muhammad Shiraz, and Adam Glowacz. 2020. "Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine" Energies 13, no. 11: 2907. https://doi.org/10.3390/en13112907
APA StyleAhmad, W., Ayub, N., Ali, T., Irfan, M., Awais, M., Shiraz, M., & Glowacz, A. (2020). Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine. Energies, 13(11), 2907. https://doi.org/10.3390/en13112907