# Development of a Transient Model of a Lightweight, Portable and Flexible Air-Based PV-T Module for UAV Shelter Hangars

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

^{®}software tool to simulate energetic systems. The main advantage of these types of panels is their easy portability, making them ideal to address thermal needs in several scenarios. In the military field, there is an important concern about the use of sustainable energy; for instance, cooling facilities for infantry tents used in their deployments. In this research, a PV-T panel to cover electrical power needs for an infantry’s hangar unmanned air vehicle (UAV) is introduced. The proposed thermal model, based on the novelty of inertial mass (lump) as an approach to real panel behavior, has been validated through the comparison between Trnsys’ model simulation data, a real weather station, and data obtained in a test bed. Genopt’s simulation software is used to fit the model, allowing for the prediction of heat transmission coefficient values. The good match between simulated and experimental data makes the proposed model suitable for the photovoltaic–thermal prediction of panel behavior.

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Experimental Setup

^{3}/h per unit; they operate under PWM, so that flowrate can be controlled, up to a maximum of 8.2 g/s and 4.3 Watts. Figure 3 shows the fans integrated in the test bed:

_{in}) and output (T

_{out}) refrigeration air temperatures, and airflow speed (FR) are logged. Environmental conditions are also logged, inasmuch as they are also relevant; wind speed is obtained using a meteorological station, and the incident radiation on PV-T panel (SI) is measured on workbench.

#### 2.2. Thermal Model

#### 2.3. TRNSYS Simulation

## 3. Results

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Nomenclature

$\alpha $ | solar absorptivity [-] |

$\epsilon $ | panel emissivity [-] |

σ | Stefan-Boltzmann’s constant [$\raisebox{1ex}{$\mathrm{W}$}\!\left/ \!\raisebox{-1ex}{${\mathrm{m}}^{2}\xb7{\mathrm{K}}^{4}$}\right.$] |

${A}_{PV}$ | panel area [m^{2}] |

${c}_{p}$ | air flow specific heat [$\mathrm{J}/\mathrm{kg}\xb7\mathrm{K}]$ |

h | convection heat transfer [$\frac{\mathrm{W}}{{\mathrm{m}}^{2}\xb7\mathrm{K}}$] |

G | irradiation [W/m^{2}] $\dot{m}$= mass air flow in cooling duct [kg/s] |

T_{amb} | ambient temperature [K] |

T_{l} | lump mass temperature [K] |

T_{ma} | average temperature of air fluid [K] |

T_{out} | system’s output temperature [°C] |

T_{s} | temperature of surface in touch with air fluid [K] |

T_{sky} | temperature in the surroundings of the system [K] |

V_{w} | wind speed [m/s] ${\dot{q}}_{conv}$= system’s convection losses [W/m^{2}] |

$\dot{Q}$ | heat speed transfer [W] |

## References

- Chow, T.T. A review on photovoltaic/thermal hybrid solar technology. Appl. Energy
**2010**, 87, 365–379. [Google Scholar] [CrossRef] - Hasan, M.A.; Sumathy, K. Photovoltaic thermal module concepts and their performance analysis: A review. Renew. Sustain. Energy Rev.
**2010**, 14, 1845–1859. [Google Scholar] [CrossRef] - Kumar, R.; Rosen, M.A. A critical review of photovoltaic thermal solar collectors for air heating. Appl. Energy
**2011**, 88, 3603–3614. [Google Scholar] [CrossRef] - Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev.
**2011**, 15, 1625–1636. [Google Scholar] [CrossRef] - Daghigh, R.; Ruslan, M.H.; Sopian, K. Advances in liquid based photovoltaic/thermal (PV/T) collectors. Renew. Sustain. Energy Rev.
**2011**, 15, 4156–4170. [Google Scholar] [CrossRef] - Ibrahim, A.; Othman, M.Y.; Ruslan, M.H.; Mat, S.; Sopian, K. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renew. Sustain. Energy Rev.
**2011**, 15, 352–365. [Google Scholar] [CrossRef] - Tyagi, V.V.; Kaushik, S.C.; Tyagi, S.K. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renew. Sustain. Energy Rev.
**2012**, 16, 1383–1398. [Google Scholar] [CrossRef] - Kamthania, D.; Tiwari, G.N. Photovoltaic thermal air collectors: A review. J. Renew. Sustain. Energy
**2014**, 6, 062701. [Google Scholar] [CrossRef] - Hamid, S.A.; Othman, M.Y.; Sopian, K.; Zaidi, S.H. An overview of photovoltaic thermal combination (PV/T combi) technology. Renew. Sustain. Energy Rev.
**2014**, 38, 212–222. [Google Scholar] [CrossRef] - Michael, J.J.; Iniyan, S.; Goic, R. Flat plate solar photovoltaic-thermal (PV/T) systems: A reference guide. Renew. Sustain. Energy Rev.
**2015**, 51, 62–88. [Google Scholar] [CrossRef] - Bhargava, A.K.; Garg, H.P.; Agarwal, R.K. Study of a hybrid solar system solar air heater combined with solar cells. Energy Convers. Manag.
**1991**, 31, 471–479. [Google Scholar] [CrossRef] - Sopian, K.; Yigit, K.S.; Liu, H.T.; Kakac, S.; Veziroglu, T.N. Performance analysis of photovoltaic thermal air heaters. Energy Convers. Manag.
**1996**, 37, 1657–1670. [Google Scholar] [CrossRef] - Othman, M.Y.H.; Yatim, B.; Sopian, K.; Bakar, M.N.A. Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins. Renew. Energy
**2005**, 30, 2005–2017. [Google Scholar] [CrossRef] - Tiwari, A.; Sodha, M.S. Parametric study of various configurations of hybrid PV/thermal air collector: Experimental validation of theoretical model. Sol. Energy Mater. Sol. Cell
**2007**, 91, 17–28. [Google Scholar] [CrossRef] - Tonui, J.K.; Tripanagnostopoulos, Y. Air-cooled PV/T solar collectors with low cost performance improvements. Sol. Energy
**2007**, 81, 498–511. [Google Scholar] [CrossRef] - Tonui, J.K.; Tripanagnostopoulos, Y. Performance improvement of PV/T solar collectors with natural air flow operation. Sol. Energy
**2008**, 82, 1–12. [Google Scholar] [CrossRef] - Katekar, V.P.; Deshmukh, S.S. A review on research trends in solar still designs for domestic and industrial applications. J. Clean. Prod.
**2020**, 120544. [Google Scholar] [CrossRef] - Pang, W.; Cui, Y.; Zhang, Q.; Wilson, G.J.; Yan, H. A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions. Renew. Sustain. Energy Rev.
**2020**, 119, 109599. [Google Scholar] [CrossRef] - Jia, Y.; Alva, G.; Fang, G. Development and applications of photovoltaic–thermal systems: A review. Renew. Sustain. Energy Rev.
**2019**, 102, 249–265. [Google Scholar] [CrossRef] - Yazdanifard, F.; Ameri, M. Exergetic advancement of photovoltaic/thermal systems (PV/T): A review. Renew. Sustain. Energy Rev.
**2018**, 97, 529–553. [Google Scholar] [CrossRef] - Sultan, S.M.; Efzan, M.E. Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Sol. Energy
**2018**, 173, 939–954. [Google Scholar] [CrossRef] - Chauhan, A.; Tyagi, V.V.; Anand, S. Futuristic approach for thermal management in solar PV/thermal systems with possible applications. Energy Convers. Manag.
**2018**, 163, 314–354. [Google Scholar] [CrossRef] - Solanki, S.C.; Dubey, S.; Tiwari, A. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors. Appl. Energy
**2009**, 86, 2421–2428. [Google Scholar] [CrossRef] - Joshi, A.S.; Tiwari, A.; Tiwari, G.N.; Dincer, I.; Reddy, B.V. Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to-glass) system. Int. J. Therm. Sci.
**2009**, 48, 154–164. [Google Scholar] [CrossRef] - Sarhaddi, F.; Farahat, S.; Ajam, H.; Behzadmehr, A.M.I.N.; Adeli, M.M. An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Appl. Energy
**2010**, 87, 2328–2339. [Google Scholar] [CrossRef] - Shahsavar, A.; Ameri, M. Experimental investigation and modeling of a direct coupled PV/T air collector. Sol. Energy
**2010**, 84, 1938–1958. [Google Scholar] [CrossRef] - Kumar, R.; Rosen, M.A. Performance evaluation of a double pass PV/T solar air heater with and without fins. Appl. Therm. Eng.
**2011**, 31, 1402–1410. [Google Scholar] [CrossRef] - Kamthania, D.; Nayak, S.; Tiwari, G.N. Performance evaluation of a hybrid photovoltaic thermal double pass facade for space heating. Energy Build.
**2011**, 43, 2274–2281. [Google Scholar] [CrossRef] - Daghigh, R.; Khaledian, Y. Design and fabrication of a bi-fluid type photovoltaic-thermal collector. Energy
**2017**, 135, 112–127. [Google Scholar] [CrossRef] - Kuo, C.F.J.; Liu, J.M.; Umar, M.L.; Lan, W.L.; Huang, C.Y.; Syu, S.S. The photovoltaic-thermal system parameter optimization design and practical verification. Energy Convers. Manag.
**2019**, 180, 358–371. [Google Scholar] [CrossRef] - Thiers, S.; Aoun, B.; Peuportier, B. Experimental characterization, modeling and simulation of a wood pellet micro-combined heat and power unit used as a heat source for a residential building. Energy Build.
**2010**, 42, 896–903. [Google Scholar] [CrossRef] - Lombardi, K.; Ugursal, V.I.; Beausoleil-Morrison, I. Proposed improvements to a model for characterizing the electrical and thermal energy performance of Stirling engine micro-cogeneration devices based upon experimental observations. Appl. Energy
**2010**, 87, 3271–3282. [Google Scholar] [CrossRef] - Magri, G.; di Perna, C.; Serenelli, G. Analysis of electric and thermal seasonal performances of a residential microchip unit. Appl. Therm. Eng.
**2012**, 36, 193–201. [Google Scholar] [CrossRef] - Ulloa, C.; Porteiro, J.; Eguía, P.; Pousada-Carballo, J.M. Application model for a stirling engine micro-generation system in caravans in different european locations. Energies
**2013**, 6, 717–732. [Google Scholar] [CrossRef][Green Version] - Ulloa, C.; Míguez, J.L.; Porteiro, J.; Eguía, P.; Cacabelos, A. Development of a Transient Model of a Stirling-Based CHP System. Energies
**2013**, 6, 3115–3133. [Google Scholar] [CrossRef][Green Version] - Keynejad, F.; Manzie, C. Cold start modeling of spark ignition engines. Control Eng. Pract.
**2011**, 19, 912–925. [Google Scholar] [CrossRef] - Hasan, A.; Vuolle, M.; Sirén, K. Minimisation of life cost of a detached house using combined simulation and optimization. Build. Environ.
**2008**, 43, 2022–2034. [Google Scholar] [CrossRef] - Yan, F.; Wang, J. Pressure-based transient intake manifold temperature reconstruction in Diesel engines. Control Eng. Pract.
**2012**, 20, 531–538. [Google Scholar] [CrossRef] - Wang, X.; Chua, H.T. Two bed silica gel-water adsorption chillers: An effectual lumped parameter model. Int. J. Refrig.
**2007**, 30, 1417–1426. [Google Scholar] [CrossRef] - HDT. HDT Global. 2017. Available online: https://www.hdtglobal.com/ (accessed on 1 February 2019).
- Ulloa, C.; Nuñez, J.M.; Lin, C.; Rey, G. AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars. Renew. Energy
**2018**, 123, 767–780. [Google Scholar] [CrossRef] - Petru, L.; Mazen, G. PWM control of a DC motor used to drive a conveyor belt. Procedia Eng.
**2015**, 100, 299–304. [Google Scholar] [CrossRef][Green Version] - Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. An open source low cost wireless control system for a forced circulation solar plant. Sensors
**2015**, 15, 27990–28004. [Google Scholar] [CrossRef][Green Version] - Avallone, E.; Cunha, D.G.; Padilha, A.; Scalon, V.L. Electronic multiplex system using the Arduino platform to control and record the data of the temperatures profiles in heat storage tank for solar collector. Int. J. Energy Environ. Eng.
**2016**, 7, 391–398. [Google Scholar] [CrossRef][Green Version] - Claros-Marfil, L.J.; Padial, J.F.; Lauret, B. A new and inexpensive open source data acquisition and controller for solar research: Application to a water-flow glazing. Renew. Energy
**2016**, 92, 450–461. [Google Scholar] [CrossRef] - Swinbank, W. Long-wave radiation from clear skies. Q. J. R. Meteorol. Soc.
**1963**, 89, 339–348. [Google Scholar] [CrossRef] - Nusselt, W.; Jürges, W. Die Kühlung einer Ebenen Wand Durch einen Luftstrom (The Cooling of a Plane Wall by an Air Flow). In Gesundheits Ingenieur; 52. Heft, 45. Jahrgang; Umwelttechnik (Munchen); DIV: Munchen, Germany, 30 December 1922; pp. 641–642. [Google Scholar]

**Figure 9.**PV-T operating scheme: the system is provided with (cold) tent air and solar radiation, supplying heated air and electricity.

**Figure 13.**Experimental actual temperature (T

_{real}) versus simulated (T

_{sim}) during simulation period.

**Figure 15.**Actual output temperature (T

_{real}) versus input temperature (T

_{in}) versus simulated lump mass temperature (°C).

Parameter | Number of Sensors | Sensor | Range | I/O Type | Power Supply |
---|---|---|---|---|---|

Temperature | 2 | DS18B20 Thermometer | −55–125 °C | Digital (One-Wire) | 5 VDC |

Flow rate | 1 | Bosch HFM 5 Air-mass meter | 8–370 kg/h | Analog (0–5 V) | 8–17 VDC |

Solar irradiation | 1 | Kipp & Zonen SMP10 Pyranometer | 0–1600 W/m^{2} | Analog (4–20 mA) | 5–30 VDC |

Simulation Step (h) | ${\mathbf{T}}_{\mathbf{o}\mathbf{u}\mathbf{t}}(\mathbb{C})$ | ${\mathbf{T}}_{\mathbf{i}\mathbf{n}}(\mathbb{C})$ | $\mathbf{\Delta}\mathbf{T}(\mathbb{C})$ |
---|---|---|---|

16 | 17.1 | 10.3 | 6.7 |

34 | 19.9 | 10.8 | 9.2 |

62 | 18.4 | 10.8 | 7.6 |

87 | 21.9 | 13.7 | 8.1 |

111 | 18.9 | 12.7 | 6.3 |

135 | 20.9 | 12.4 | 8.4 |

159 | 21.2 | 12.7 | 8.5 |

183 | 21.7 | 13.7 | 7.0 |

Period | ${\overline{\mathbf{T}}}_{\mathbf{o}\mathbf{u}\mathbf{t}}(\mathbb{C})$ | ${\overline{\mathbf{T}}}_{\mathbf{i}\mathbf{n}}(\mathbb{C})$ | $\mathbf{\Delta}\overline{\mathbf{T}}(\mathbb{C})$ |
---|---|---|---|

Simulation time ($100\%)$ | 7.7 | 6.6 | 1.2 |

Heating time ($37.5\%)$ | 14.9 | 10.0 | 4.8 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Orgeira-Crespo, P.; Ulloa, C.; Núñez, J.M.; Pérez, J.A. Development of a Transient Model of a Lightweight, Portable and Flexible Air-Based PV-T Module for UAV Shelter Hangars. *Energies* **2020**, *13*, 2889.
https://doi.org/10.3390/en13112889

**AMA Style**

Orgeira-Crespo P, Ulloa C, Núñez JM, Pérez JA. Development of a Transient Model of a Lightweight, Portable and Flexible Air-Based PV-T Module for UAV Shelter Hangars. *Energies*. 2020; 13(11):2889.
https://doi.org/10.3390/en13112889

**Chicago/Turabian Style**

Orgeira-Crespo, Pedro, Carlos Ulloa, José M. Núñez, and José A. Pérez. 2020. "Development of a Transient Model of a Lightweight, Portable and Flexible Air-Based PV-T Module for UAV Shelter Hangars" *Energies* 13, no. 11: 2889.
https://doi.org/10.3390/en13112889