Selective CO Methanation in H2-Rich Gas for Household Fuel Cell Applications
Abstract
:1. Introduction
2. Calculations and Methods
3. Results and Discussion
3.1. Simulation of a Single Adiabatic Fixed Bed Reactor for Selective CO Methanation
3.2. Simulation of a Two-Stage Adiabatic Fixed Bed Reactor with Intermediate Cooling
3.3. Flexible and Safe Operation of the Two-stage Adiabatic Fixed Bed Reactor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Djinović, P.; Galletti, C.; Specchia, S.; Specchia, V. Ru-based catalysts for CO selective methanation reaction in H2-rich gases. Catal. Today 2011, 164, 282–287. [Google Scholar] [CrossRef]
- Oh, S.H.; Sinkevitch, R.M. Carbon Monoxide Removal from Hydrogen-Rich Fuel Cell Feedstreams by Selective Catalytic Oxidation. J. Catal. 1993, 142, 254–262. [Google Scholar] [CrossRef]
- Echigo, M. A study of CO removal on an activated Ru catalyst for polymer electrolyte fuel cell applications. Appl. Catal. A Gen. 2003, 251, 157–166. [Google Scholar] [CrossRef]
- Goerke, O.; Pfeifer, P.; Schubert, K. Water gas shift reaction and selective oxidation of CO in microreactors. Appl. Catal. A Gen. 2004, 263, 11–18. [Google Scholar] [CrossRef]
- Mariño, F.; Baronetti, G.; Laborde, M.; Bion, N.; Le Valant, A.; Epron, F.; Duprez, D. Optimized CuO–CeO2 catalysts for COPROX reaction. Int. J. Hydrogen Energy 2008, 33, 1345–1353. [Google Scholar] [CrossRef]
- Laguna, O.H.; Hernández, W.Y.; Arzamendi, G.; Gandía, L.M.; Centeno, M.A.; Odriozola, J.A. Gold supported on CuOx/CeO2 catalyst for the purification of hydrogen by the CO preferential oxidation reaction (PROX). Fuel 2014, 118, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Peters, R.; Meißner, J. Gasaufbereitung für Brennstoffzellen. Chem. Ing. Tech. 2004, 76, 1555–1558. [Google Scholar] [CrossRef]
- Galletti, C.; Specchia, S.; Saracco, G.; Specchia, V. CO Methanation as Alternative Refinement Process for CO Abatement in H2-Rich Gas for PEM Applications. Int. J. Chem. React. Eng. 2007, 5. [Google Scholar] [CrossRef]
- Echigo, M.; Tabata, T. Reaction and Surface Characterization Studies of Ru/Al2O3 Catalysts for CO Preferential Oxidation in Reformed Gas. Catal. Lett. 2004, 98, 37–42. [Google Scholar] [CrossRef]
- Töpler, J.; Lehmann, J. Hydrogen and Fuel Cell; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-44971-4. [Google Scholar]
- Garbis, P.; Kern, C.; Jess, A. Kinetics and Reactor Design Aspects of Selective Methanation of CO over a Ru/γ-Al2O3 Catalyst in CO2/H2 Rich Gases. Energies 2019, 12, 469. [Google Scholar] [CrossRef] [Green Version]
- Görke, O.; Pfeifer, P.; Schubert, K. Highly selective methanation by the use of a microchannel reactor. Catal. Today 2005, 110, 132–139. [Google Scholar] [CrossRef]
- PACE. Available online: pace-energy.eu (accessed on 25 February 2019).
- Viessmann. Brennstoffzellen-Heizgerät VITOVALOR PT2. Available online: https://bit.ly/2TceZql (accessed on 17 December 2019).
- Garbis, P. Kinetics and Reactor Design Aspects of Selective Methanation of CO over a Ru/γ-Al2O3 Catalyst in CO2/H2 Rich Gases. Ph.D. Thesis, Universität Bayreuth, Bayreuth, Germany, 2019. [Google Scholar]
Parameter | Value |
---|---|
Catalyst bulk density, ρb | 500 kg m−3 |
Activation energy, ΕA,CO | 90 kJ mol−1 |
Pre-exponential factor, k0,CO | 3.61 × 107 m6 s−1 kg−1 mol−1 |
Langmuir (adsorption) constant, K1 | 23 m3 mol−1 |
Langmuir constant, K2 | 0.3 m3 mol−1 |
Activation energy, EA,CO2 | 81 kJ mol−1 |
Pre-exponential factor k0,CO2 | 2.8 × 104 m6 s−1 kg−1 mol−1 |
Factor K0,3 | 8.4 m3 mol−1 |
Adsorption enthalpy, ΔH3 | 15 kJ mol−1 |
Factor K0,4 | 1.15 × 10−13 m3 mol−1 |
Adsorption enthalpy, ΔH4 1 | −125 kJ mol−1 |
Langmuir constant, K5 | 1.1 m3 mol−1 |
Tin in °C | Tout in °C | mcat in kg | XCO in % | XCO2 in % | XH2 in % | EH2 | CO Content at Reactor Outlet |
---|---|---|---|---|---|---|---|
130 | 200 | 4.90 | 98.00 | 0.38 | 2.50 | 1.12 | 100 ppm |
211 | 7.40 | 99.99 | 0.95 | 3.10 | 1.39 | < 1 ppm | |
140 | 210 | 2.90 | 98.00 | 0.41 | 2.51 | 1.12 | 100 ppm |
220 | 4.40 | 99.99 | 0.90 | 3.01 | 1.35 | < 1 ppm | |
150 | 222 | 1.80 | 98.00 | 0.46 | 2.64 | 1.18 | 100 ppm |
230 | 2.70 | 99.99 | 0.85 | 3.04 | 1.37 | < 1 ppm |
Parameter | CO Content in Feed Gas | ||
---|---|---|---|
0.5 % | 0.7 % | ||
Operating conditions | Inlet temperature | 140 °C | 110 °C |
Pressure | 1 bar | 1 bar | |
Outlet temperature | 220 °C | 224 °C | |
Reactor dimensions | Mass of catalyst | 4.4 kg | 25.5 kg |
Volume | 11.7 L | 68.0 L | |
Tube diameter/length | 20 cm/37 cm | 30 cm/96 cm | |
Outlet gas composition | CO | < 1 ppm | < 1 ppm |
CO2 | 16.5% | 16.4% | |
H2O | 17.0% | 17.5% | |
H2 | 65.8% | 65.2% | |
CH4 | 0.7% | 0.9% | |
Conversion | CO | 99.99% | 99.99% |
CO2 | 0.9% | 1.3% | |
H2 | 3.0% | 4.4% | |
EH2 | 1.35 | 1.40 |
Parameter | 1st Adiabatic Fixed Bed Reactor | 2nd Adiabatic Fixed Bed Reactor |
---|---|---|
Tin in °C | 180 | 180 |
Tout in °C | 230 | 203 |
mcat in kg | 0.27 | 0.30 |
V in L | 0.54 | 0.6 |
dr, lr in cm | 5, 28 | 5, 31 |
XCO in % | 71.21 | 98.00 |
XCO2 in % | 0.28 | 0.81 |
XH2 in % | 1.87 | 3.90 |
EH2 | - | 1.74 |
Gas composition at reactor outlet | 0.15% CO 16.6% CO2 16.6% H2O 66.3% H2 0.4% CH4 | 100 ppm CO 16.7% CO2 17.1% H2O 65.6% H2 0.6% CH4 |
Parameter | 1st Adiabatic Fixed Bed Reactor | 2nd Adiabatic Fixed Bed Reactor |
---|---|---|
Tin in °C | 150 | 145 |
Tout in °C | 220 | 220 |
mcat in kg | 1.67 | 3.0 |
V in L | 3.35 | 6.0 |
dr, lr in cm | 10.43 | 20, 76 |
XCO in % | 51 | 99.93 |
XCO2 in % | 0.22 | 0.85 |
XH2 in % | 2.45 | 5.30 |
EH2 | - | 1.15 |
Gas composition at reactor outlet | 0.5% CO 16.1% CO2 16.8% H2O 66.1% H2 0.5% CH4 | 8 ppm CO 16.2% CO2 17.7% H2O 64.9% H2 1.2% CH4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbis, P.; Jess, A. Selective CO Methanation in H2-Rich Gas for Household Fuel Cell Applications. Energies 2020, 13, 2844. https://doi.org/10.3390/en13112844
Garbis P, Jess A. Selective CO Methanation in H2-Rich Gas for Household Fuel Cell Applications. Energies. 2020; 13(11):2844. https://doi.org/10.3390/en13112844
Chicago/Turabian StyleGarbis, Panagiota, and Andreas Jess. 2020. "Selective CO Methanation in H2-Rich Gas for Household Fuel Cell Applications" Energies 13, no. 11: 2844. https://doi.org/10.3390/en13112844
APA StyleGarbis, P., & Jess, A. (2020). Selective CO Methanation in H2-Rich Gas for Household Fuel Cell Applications. Energies, 13(11), 2844. https://doi.org/10.3390/en13112844