Use of Alternative Raw Materials in Coke-Making: New Insights in the Use of Lignites for Blast Furnace Coke Production
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. Coal Charge Bulk Density
3.2. Coke Porous Structure
3.3. Carbon Dioxide Adsorption
3.4. Nitrogen Adsorption
3.5. Total Porosity of Coke
3.6. Coke Optical Anisotropy
3.7. Coke Technological Parameters
4. Conclusions
- -
- The addition of a lignite in loose form to the coking blend, causes significant deterioration in the coke quality parameters: an increase in the volume and area of micropores (measured by CO2 sorption), an increase in the total pore volume and total porosity, a decrease in coke optical anisotropy and a deterioration in NSC parameters (CRI and CSR).
- -
- Incorporation of the briquetting process positively influenced the coke quality parameters. It was found that the total pore volume and total porosity were slightly decreased. Thanks to the use of the partial briquetting method, coke with equally high quality parameters as without the addition of lignite was produced.
Author Contributions
Funding
Conflicts of Interest
References
- Karcz, A.; Strugała, A. Increasing chances of utilizing the domestic coking coal resources through technological operations in coal blend preparation. Gospod. Surowcami Miner. Miner. Resour. Manag. 2008, 24, 5–18, (in Polish with English abstract). [Google Scholar]
- Nomura, S. Coal briquette carbonization in a slot-type coke oven. Fuel 2016, 185, 649–655. [Google Scholar] [CrossRef]
- Flores, B.D.; Flores, I.V.; Guerrero, A.; Orellana, D.R.; Pohlmann, J.G.; Diez, M.A.; Borrego, A.G.; Osório, E.; Vilela, A.C.F. Effect of charcoal blending with a vitrinite rich coking coal on coke reactivity. Fuel Process. Technol. 2017, 155, 97–105. [Google Scholar] [CrossRef]
- Żarczyński, P.; Strugała, A. Studies on the Possibility of Extending Coal Resources for Coke Production through the Application of Coal Predrying. Energy Fuels 2018, 32, 5666–5676. [Google Scholar] [CrossRef]
- Ahmed, H. New Trends in the Application of Carbon-Bearing Materials in Blast Furnace Iron-Making. Minerals 2018, 8, 561. [Google Scholar] [CrossRef] [Green Version]
- Smędowski, Ł.; Krzesińska, M. Molecular oriented domains (MOD) and their effect on technological parameters within the structure of cokes produced from binary and ternary coal blends. Int. J. Coal Geol. 2013, 111, 90–97. [Google Scholar] [CrossRef]
- Castro Díaz, M.; Zhao, H.; Kokonya, S.; Dufour, A.; Snape, C.E. The effect of biomass on fluidity development in coking blends using high-temperature SAOS rheometry. Energy Fuels 2012, 26, 1767–1775. [Google Scholar] [CrossRef]
- Kokonya, S.; Castro Díaz, M.; Barriocanal, C.; Snape, C.E. An investigation into the effect of fast heating on fluidity development and coke quality for blends of coal and biomass. Biomass Bioenergy 2013, 56, 295–306. [Google Scholar] [CrossRef]
- Diez, M.A.; Alvarez, R.; Fernández, M. Biomass derived products as modifiers of the rheological properties of coking coals. Fuel 2012, 96, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Krzesińska, M.; Szeluga, U.; Smędowski, Ł.; Majewska, J.; Pusz, S.; Czajkowska, S.; Kwiecińska, B. TGA and DMA studies of blends from very good coking Zofiówka coal and various carbon additives: Weakly coking coals, industrial coke and carbonized plants. Int. J. Coal Geol. 2010, 81, 293–300. [Google Scholar] [CrossRef]
- Diez, M.A.; Alvarez, R.; Climadevilla, J.L.G. Briquetting of carbon-containing wastes from steelmaking for metallurgical coke production. Fuel 2013, 114, 216–223. [Google Scholar] [CrossRef]
- Melendi, S.; Diez, M.A.; Alvarez, R.; Barriocanal, C. Relevance of the composition of municipal plastic wastes for metallurgical coke production. Fuel 2011, 90, 1431–1438. [Google Scholar] [CrossRef] [Green Version]
- MacPhee, J.A.; Gransden, J.F.; Giroux, L.; Price, J.T. Possible CO2 mitigation via addition of charcoal to coking coal blends. Fuel Process. Technol. 2009, 90, 16–20. [Google Scholar] [CrossRef]
- Alvarez, R.; Barriocanal, C.; Díez, M.A.; Cimadevilla, J.L.G.; Casal, M.D.; Canga, C.S. Recycling of hazardous waste materials in the coking process. Environ. Sci. Technol. 2004, 38, 1611–1615. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.M.; Barriocanal, C.; Díez, M.A.; Alvarez, R. Influence of additives of different origins on thermoplastic properties of coal. Fuel 2009, 88, 2365–2372. [Google Scholar] [CrossRef]
- Diez, M.A.; Alvarez, R.; Melendi, S.; Barriocanal, C. Feedstock recycling of plastic wastes/oil mixtures in cokemaking. Fuel 2009, 88, 1937–1944. [Google Scholar] [CrossRef]
- Díaz, M.C.; Edecki, L.; Steel, K.M.; Patrick, J.W.; Snape, C.E. Determination of the effects caused by different polymers on coal fluidity during carbonisation using high-temperature 1H NMR and rheometry. Energy Fuels 2008, 22, 471–479. [Google Scholar] [CrossRef]
- Collin, G.; Bujnowska, B.; Polaczek, J. Co-coking of coal with pitches and waste plastics. Fuel Process. Technol. 1997, 47, 179–184. [Google Scholar] [CrossRef]
- Montiano, M.G.; Diaz-Faes, E.; Barriocanal, C. Partial briquetting vs direct addition of biomass in coking blends. Fuel 2014, 137, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Montiano, M.G.; Diaz-Faes, E.; Barriocanal, C. Effect of briquette composition and size on the quality of the resulting coke. Fuel 2016, 185, 649–655. [Google Scholar] [CrossRef]
- Nomura, S. Recent developments in cokemaking technologies in Japan. Fuel Process. Technol. 2017, 159, 1–8. [Google Scholar] [CrossRef]
- Sobolewski, A.; Rejdak, M.; Czaplicki, A.; Janusz, M.; Mianowski, A. The effect of coal charge preparation on coke quality. Przemysł Chem. 2014, 93, 2103–2110, (in Polish with English abstract). [Google Scholar]
- Rejdak, M.; Wasielewski, R. Mechanical compaction of coking coals for carbonization in stamp-charging coke ovens. Physicochem. Probl. Miner. Process. 2015, 51, 151–161. [Google Scholar] [CrossRef]
- Borowski, G.; Hycnar, J. Utilization of Fine Coal Waste as a Fuel Briquettes. Int. J. Coal Prep. Util. 2013, 33, 204. [Google Scholar] [CrossRef]
- Rejdak, M.; Robak, J.; Czardybon, A.; Ignasiak, K.; Fudała, P. Research on the Production of Composite Fuel on the Basis of Fine-Grained Coal Fractions and Biomass—The Impact of Process Parameters and the Type of Binder on the Quality of Briquettes Produced. Minerals 2020, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Han, Y.; Sun, Y.; Gao, P.; Li, Y.; Gong, G. Growth Behavior and Size Characterization of Metallic Iron Particles in Coal-Based Reduction of Oolitic Hematite–Coal Composite Briquettes. Minerals 2018, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Pang, L.; Yang, Y.; Wu, L.; Wang, F.; Meng, H. Effect of Particle Sizes on the Physical and Mechanical Properties of Briquettes. Energies 2019, 12, 3618. [Google Scholar] [CrossRef] [Green Version]
- Kurunov, I.; Lizogub, P.; Golubev, O. Coal Preparation, Coking, and Slaking in China and Japan. Coke Chem. 2010, 9, 22–27. [Google Scholar] [CrossRef]
- Fehse, F.; Rosin, K.; Schröder, H.W.; Kim, R.; Spöttle, M.; Repke, J.U. Influence of briquetting and coking parameters on the lump coke production using non-caking coals. Fuel 2017, 203, 915–923. [Google Scholar] [CrossRef]
- Mori, A.; Kubo, S.; Kudo, S.; Norinaga, K.; Kanai, T.; Aoki, H.; Hayashi, J.-I. Preparation of high-strength coke by carbonization of hot-briquetted Victorian brown coal. Energy Fuel 2011, 26, 296–301. [Google Scholar] [CrossRef]
- Zubkova, V.; Strójwąs, A.; Strojanowska, M.; Kowalczyk, J. The influence of composition of coal briquettes on changes in volume of the heated coal charge. Fuel Process. Technol. 2014, 128, 265–275. [Google Scholar] [CrossRef]
- Mamun Mollah, M.; Jackson, W.R.; Marshall, M.; Chaffee, A.L. An attempt to produce blast furnace coke from Victorian brown coal. Fuel 2015, 148, 104–111. [Google Scholar] [CrossRef]
- Florentino-Madiedo, L.; Diaz-Faes, E.; Barriocanal, C. Reactivity of biomass containing briquettes for metallurgical coke production. Fuel Process. Technol. 2019, 193, 212–220. [Google Scholar] [CrossRef]
- Florentino-Madiedo, L.; Diaz-Faes, E.; Barriocanal, C. The effect of briquette composition on coking pressure generation. Fuel 2019, 258, 116128. [Google Scholar] [CrossRef]
- Florentino-Madiedo, L.; Diaz-Faes, E.; Barriocanal, C. Mechanical strength of bio-coke from briquettes. Renew. Energy 2020, 146, 1717–1724. [Google Scholar] [CrossRef]
- Karcz, A.; Rozwadowski, A. The pyrolysis examinations for blends of bituminous coal and soft brown coal. Karbo 2002, 6, 171–175, (in Polish with English abstract). [Google Scholar]
- Li, K.; Khanna, R.; Zhang, J.; Liu, Z.; Sahajwalla, V.; Yang, T.; Deven, K. The evolution of structural order, microstructure and mineral matter of metallurgical coke in a blast furnace: A review. Fuel 2014, 133, 194–215. [Google Scholar] [CrossRef]
- Nag, D.; Haldar, S.K.; Choudhary, P.K.; Banerjee, P.K. Prediction of Coke CSR from Ash Chemistry of Coal Blend. Int. J. Coal Prep. Util. 2009, 29, 243–250. [Google Scholar] [CrossRef]
- Tiwari, H.P.; Haldar, S.K.; Das, A.; Mishra, P.; Kumar, A.; Khattri, P. Potential Use of High Ash Indian Medium Coking Coal in Stamp Charged Coke Making. Int. J. Coal Prep. Util. 2017, 39, 101–111. [Google Scholar] [CrossRef]
- Piechaczek, M.; Mianowski, A.; Sobolewski, A. The original concept of description of the coke optical texture. Int. J. Coal Geol. 2015, 139, 84–190. [Google Scholar] [CrossRef]
- Lozano-Castello, D.; Cazorla-Amor, D.; Linares-Solano, A. Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. Carbon 2004, 42, 1231–1236. [Google Scholar] [CrossRef]
- Grigore, M.; Sakurows, R.; French, D.; Sahajwalla, S. Properties and CO2 reactivity of the inert and reactive maceral derived components in cokes. Int. J. Coal Geol. 2012, 98, 1–9. [Google Scholar] [CrossRef]
- Diez, M.A.; Borrego, A.G. Evaluation of CO2-reactivity patterns in cokes from coal and woody biomass blends. Fuel 2013, 113, 59–68. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, L.; Rui, G.; Pengfei, L.; Yinhua, L. Preparation of high strength and highly reactive coke by the addition of steel slag. Coke Chem. 2014, 57, 391–397. [Google Scholar] [CrossRef]
- Krzesińska, M.; Pusz, S.; Smędowski, Ł. Characterization of the porous structure of cokes produced from the blends of three Polish bituminous coking coals. Int. J. Coal Geol. 2009, 78, 169–176. [Google Scholar] [CrossRef]
- Koba, K.; Sakata, K.; Ida, S. Gasification studies of cokes from coals. The effects of carbonization pressure on optical texture and porosity. Fuel 1981, 60, 499–506. [Google Scholar] [CrossRef]
- Patrick, J.W.; Walker, A. Macroporosity in cokes: Its significance, measurement, and control. Carbon 1989, 27, 117–123. [Google Scholar] [CrossRef]
- Marsh, H. Metallurgical coke: Formation, structure and properties. Ironmak. Conf. Proc. 1982, 4, 2–10. [Google Scholar]
- Tomaszewicz, M.; Mianowski, A. Char structure dependence on formation enthalpy of parent coal. Fuel 2017, 199, 380–393. [Google Scholar] [CrossRef]
- Rejdak, M. Influence of Raw Material Properties and Stamping Operation on the Mechanical Strength of Stamped Coal Cake and the Quality of Obtained Coke. Ph.D. Thesis, University of Science and Technology, AGH Kraków, Kraków, Poland, 2018. (in Polish with English abstract). [Google Scholar]
- Strugała, A. The Role of Material and Technological Factors in the Formation Process of Coke Porous Structure; AGH University Press: Kraków, Poland, 2006; (in Polish with English abstract). [Google Scholar]
- Oberlin, A. High resolution TEM studies of carbonization and graphitization. Chem. Phys. Carbon 1989, 22, 1–143. [Google Scholar]
- Rouzaud, J.N.; Vogt, D.; Oberlin, A. Coke properties and their microtexture; Part I: Micro textural analysis: A guide for cokemaking. Fuel Process. Technol. 1988, 20, 143–154. [Google Scholar] [CrossRef]
- Suarez-Ruiz, I.; Garcia, A.B. Optical parameters as a toll to study the microtextural evolution of carbonized anthracites during high temperature treatment. Energy Fuels 2007, 21, 2935–2941. [Google Scholar] [CrossRef]
- Pusz, S.; Kwiecińska, B.; Koszorek, A.; Krzesińska, M.; Pilawa, B. Relationships between the optical reflectance of coal blends and the microscopic characteristics of their cokes. Int. J. Coal Geol. 2009, 77, 356–362. [Google Scholar] [CrossRef]
- Flores, B.; Borrego, A.; Diez, M.A.; Da Silva, G.; Zymla, V.; Vilela, A.; Osorio, E. How coke optical texture became a relevant tool for understanding coal blending and coke quality. Fuel Process. Technol. 2017, 164, 13–23. [Google Scholar] [CrossRef]
- Nyathi, M.S.; Kruse, R.; Mastalerz, M.; Blish, D. Impact of Oven Bulk Density and Coking Rate on Stamp-Charged Metallurgical Coke Structural Properties. Energy Fuels 2013, 27, 7876–7884. [Google Scholar] [CrossRef]
- Cui, P.; Qu, L.; Ling, Q.; Cheng, L.; Cao, Y. Effects of Coal Moisture Control and Coal Briquette Technology on Structure and Reactivity of Cokes. Coke Chem. 2015, 5, 162–169. [Google Scholar] [CrossRef]
- Marsh, H. Introduction to Carbon Science: Coal to Coke Conversion; Butterworths: London, UK, 1989. [Google Scholar]
- Żarczyński, P. Technological and Economic Evaluation of the Pre-Drying Operation of the Coal Charge in Zdzieszowice Coking Plant. Ph.D. Thesis, University of Science and Technology, AGH Kraków, Kraków, Poland, 2015. (in Polish with English abstract). [Google Scholar]
- Nomura, S.; Mahoney, M.; Fukuda, K.; Kato, K.; Le Bas, A.; McGuire, S. The mechanism of coking pressure generation I: Effect of high volatile coking coal, semi-anthracite and coke breeze on coking pressure and plastic coal layer permeability. Fuel 2010, 89, 1549–1556. [Google Scholar] [CrossRef]
- Mahoney, M.; Nomura, S.; Fukuda, K.; Kato, K.; Le Bas, A.; Jenkins, D.R.; McGuire, S. The mechanism of coking pressure generation II: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and contraction. Fuel 2010, 89, 1557–1565. [Google Scholar] [CrossRef]
- Nomura, S. Effect of Coal Briquette Size on Coke Quality and Coal Bulk Density in Coke Oven, 2019). ISIJ Int. 2019, 59, 1512–1518. [Google Scholar] [CrossRef] [Green Version]
- Florentino-Madiedo, L.; Casal, D.; Díaz-Faes, E.; Barriocanal, C. Effect of sawdust addition on coking pressure produced by two low vol bituminous coals. J. Anal. Appl. Pyrolysis 2017, 127, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.M.; Barriocanal, C.; Alvarez, R. The effect of additives on coking pressure and coke quality. Fuel 2012, 95, 642–647. [Google Scholar] [CrossRef]
Coal | Ma, % | Ad, % | VMdaf, | Cta, % | Hta, % | Nta, % | Sta, % |
---|---|---|---|---|---|---|---|
Standard blend SB | 0.42 | 8.29 | 26.7 | 81.8 | 4.46 | 1.35 | 0.62 |
Lignite BC | 6.8 | 11.5 | 56.4 | 58.2 | 4.52 | 0.7 | 0.43 |
Parameter | Standard Blend | 4.5% BC | 9% BC | 4.5% BC Briq. | 9% BC Briq. |
---|---|---|---|---|---|
Coal charge bulk density, kg/m3 (wet basis) | 759.9 | 739.1 | 720.4 | 851.0 | 830.0 |
Coal charge bulk density, kg/m3 (dry basis) | 701.4 | 665.9 | 636.8 | 766.8 | 733.7 |
Coke CO2 micropore volume (×10−3), cm3/g | 2.20 | 3.92 | 5.42 | 4.51 | 5.17 |
Coke CO2 DR surface area, m2/g | 19.4 | 32.1 | 34.9 | 32.6 | 33.4 |
Coke N2 micropore volume (×10−3), cm3/g | 0.182 | 0.178 | 0.1895 | 0.233 | 0.2 |
Coke N2 mesopore volume (×10−3), cm3/g | 0.961 | 0.989 | 0.8755 | 0.925 | 0.985 |
Coke N2 macropore volume, (×10−3), cm3/g | 0.586 | 0.467 | 0.7405 | 0.487 | 0.632 |
Coke N2 BET surface area, m2/g | 0.81 | 0.7231 | 0.795 | 0.8115 | 0.78 |
Coke true density, g/cm3 | 1.804 | 1.809 | 1.827 | 1.834 | 1.834 |
Coke apparent density, g/cm3 | 0.967 | 0.967 | 0.942 | 1.000 | 0.956 |
Coke total pore volume, cm3/g | 0.480 | 0.481 | 0.514 | 0.455 | 0.501 |
Coke total porosity, % | 46.4 | 46.5 | 48.4 | 45.5 | 47.9 |
CRI, % | 34.1 | 38.2 | 42.2 | 34.7 | 39.0 |
CSR % | 49.1 | 41.4 | 34.5 | 50.0 | 44.0 |
Optical Texture Type | SB | 4.5% BC | 9% BC | 4.5% BC Briq. | 9% BC Briq. |
---|---|---|---|---|---|
Isotropic | 0.0 | 0.0 | 2.1 | 0.0 | 0.0 |
Incipient | 1.12 | 0.79 | 3.49 | 9.20 | 10.29 |
Circular fine | 7.24 | 13.10 | 15.90 | 9.95 | 9.90 |
Circular medium | 27.64 | 20.63 | 18.01 | 20.65 | 27.24 |
Circular coarse | 11.13 | 6.15 | 5.07 | 5.97 | 4.95 |
Lenticular fine | 13.17 | 8.93 | 3.85 | 11.69 | 11.43 |
Lenticular medium | 15.96 | 13.89 | 8.92 | 11.44 | 8.95 |
Lenticular coarse | 0.37 | 2.18 | 0.0 | 0.0 | 0.0 |
Ribbon fine | 1.30 | 0.6 | 0.0 | 1.49 | 0.0 |
Ribbon medium | 0.37 | 0.0 | 0.0 | 0.0 | 0.0 |
Ribbon coarse | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pyrolytic carbon | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Organic inerts | 18.36 | 26.39 | 25.18 | 25.38 | 24.00 |
Inorganic inerts | 3.34 | 7.34 | 17.48 | 4.23 | 3.24 |
Fibrosity index, Wx | 0.324 | 0.262 | 0.179 | 0.259 | 0.245 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rejdak, M.; Bigda, R.; Wojtaszek, M. Use of Alternative Raw Materials in Coke-Making: New Insights in the Use of Lignites for Blast Furnace Coke Production. Energies 2020, 13, 2832. https://doi.org/10.3390/en13112832
Rejdak M, Bigda R, Wojtaszek M. Use of Alternative Raw Materials in Coke-Making: New Insights in the Use of Lignites for Blast Furnace Coke Production. Energies. 2020; 13(11):2832. https://doi.org/10.3390/en13112832
Chicago/Turabian StyleRejdak, Michał, Rafał Bigda, and Małgorzata Wojtaszek. 2020. "Use of Alternative Raw Materials in Coke-Making: New Insights in the Use of Lignites for Blast Furnace Coke Production" Energies 13, no. 11: 2832. https://doi.org/10.3390/en13112832
APA StyleRejdak, M., Bigda, R., & Wojtaszek, M. (2020). Use of Alternative Raw Materials in Coke-Making: New Insights in the Use of Lignites for Blast Furnace Coke Production. Energies, 13(11), 2832. https://doi.org/10.3390/en13112832