Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP)
Abstract
:1. Introduction
2. Materials and Methods
2.1. SCPWDP Description
2.2. Mathematical Model
2.3. Model Validation
3. Results and Discussion
3.1. Economic Analysis
3.2. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A | Area: (m2) |
H | Height, (m) |
cp | Specific heat capacity, (J/kg.K) |
D | Diameter, (m) |
I | Solar irradiation intensity, (W/m2) |
Pelc | Electrical Out Power, (W) |
T | Temperature, (K) |
Qout | The heat transfer between the chimney and the ambient, (W) |
h | Heat transfer coefficient, (W/m2. K) |
hfg | Latent heat of water evaporation, (W/m2. K) |
Mass flow rate, (kg/sec) | |
g | Acceleration of gravity, (m/s2) |
q | Heat transfer rate, (W/m2) |
i | Enthalpy |
r | Radius, (m) |
k | Air thermal conductivity |
dh | Hydraulic diameter, (m) |
f | Friction factor |
PV | Photo Voltaic |
CPU | Central Processing Unit |
RAM | Random Access Memory |
GH | Giga Hertz |
GB | Giga Byte |
rw | Water Pool Radius |
It | Yearly Investment Expenditures (Including Financing) |
t | One Year Time |
Mt | Yearly Operating and Maintenance Expenditures |
Ft | Yearly fuel expenditures |
Et | Yearly Electricity Production |
dr | Discount Rate |
n | System Life |
Greek Symbols | |
Τ | Transmissivity |
A | Absorptivity |
Ρ | Density, kg/m3 |
ω | Humidity ratio |
Τ | Transmissivity |
Subscripts | |
air | Airflow |
gls | Glass cover or convective heat transfer |
abs | Absorber plate |
ch | Chimney |
cd | Condensated water |
col | Collector roof |
e | Evaporation |
rad | Radiation heat transfer |
out | Outside |
ent | Entrance |
wtr | Water |
sky | Sky |
c | Convective heat transfer |
r | Radiative heat transfer |
References
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Salameh, T.; Ghenai, C.; Merabet, A.; Alkasrawi, M. Techno-economical optimization of an integrated stand-alone hybrid solar PV tracking and diesel generator power system in Khorfakkan, UAE. Energy 2020, 190, 116475. [Google Scholar] [CrossRef]
- Al Momani, F.A.; Shawaqfeh, A.T.; Mo‘ayyed, S.S. Solar wastewater treatment plant for aqueous solution of pesticide. Solar Energy 2007, 81, 1213–1218. [Google Scholar] [CrossRef]
- Al-Addous, M.; Alnaief, M.; Class, C.; Nsair, A.; Kuchta, K.; Alkasrawi, M. Technical Possibilities of Biogas Production from Olive and Date Waste in Jordan. BioResources 2017, 12, 9383–9395. [Google Scholar]
- Bozorg-Haddad, O.; Zolghadr-Asli, B.; Sarzaeim, P.; Aboutalebi, M.; Chu, X.; Loáiciga, H.A. Evaluation of water shortage crisis in the Middle East and possible remedies. J. Water Supply Res. Technol. 2020, 69, 85–98. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Ochieng, R.M. A review of solar chimney power technology. Renew. Sustain. Energy Rev. 2010, 14, 2315–2338. [Google Scholar] [CrossRef]
- Dhahri, A.; Omri, A. A review of solar chimney power generation technology. Int. J. Eng. Adv. Technol. 2013, 2, 1–17. [Google Scholar]
- Schlaich, J. The solar chimney: Electricity from the sun, Edition Axel Menges, Stuttgart, Germany, 1995.[2] ROBERT R. Span. Sol. Chimney Nears Complet. MPS Rev. 1981, 6, 21–23. [Google Scholar]
- Elsayed, I.; Nishi, Y. A feasibility study on power generation from solar thermal wind tower: Inclusive impact assessment concerning environmental and economic costs. Energies 2018, 11, 3181. [Google Scholar] [CrossRef] [Green Version]
- Lipnicki, Z.; Gortych, M.; Staszczuk, A.; Kuczyński, T.; Grabas, P. Analytical and experimental investigation of the solar chimney system. Energies 2019, 12, 2060. [Google Scholar] [CrossRef] [Green Version]
- Kommalapati, R.; Kadiyala, A.; Shahriar, M.T.; Huque, Z. Review of the life cycle greenhouse gas emissions from different photovoltaic and concentrating solar power electricity generation systems. Energies 2017, 10, 350. [Google Scholar] [CrossRef] [Green Version]
- Tan, A.Y.K.; Wong, N.H. Parameterization studies of solar chimneys in the tropics. Energies 2013, 6, 145–163. [Google Scholar] [CrossRef] [Green Version]
- Klimes, L.; Charvát, P.; Hejčík, J. Comparison of the energy conversion efficiency of a solar chimney and a solar PV-powered fan for ventilation applications. Energies 2018, 11, 912. [Google Scholar] [CrossRef] [Green Version]
- Gholamalizadeh, E.; Chung, J.D. A comparative study of CFD models of a real wind turbine in solar chimney power plants. Energies 2017, 10, 1674. [Google Scholar] [CrossRef] [Green Version]
- Gholamalizadeh, E.; Kim, M.H. Multi-objective optimization of a solar chimney power plant with inclined collector roof using genetic algorithm. Energies 2016, 9, 971. [Google Scholar] [CrossRef] [Green Version]
- Chergui, T.; Larbi, S.; Bouhdjar, A. Thermo-hydrodynamic aspect analysis of flows in solar chimney power plants—A case study. Renew. Sustain. Energy Rev. 2010, 14, 1410–1418. [Google Scholar] [CrossRef]
- Bilgen, E.; Rheault, J. Solar chimney power plants for high latitudes. Sol. Energy 2005, 79, 449–458. [Google Scholar] [CrossRef]
- Fluri, T.P.; Von Backström, T.W. Performance analysis of the power conversion unit of a solar chimney power plant. Sol. Energy 2008, 82, 999–1008. [Google Scholar] [CrossRef]
- Mathur, J.; Mathur, S. Anupma Summer-performance of inclined roof solar chimney for natural ventilation. Energy Build. 2006, 38, 1156–1163. [Google Scholar] [CrossRef]
- Afonso, C.; Oliveira, A. Solar chimneys: Simulation and experiment. Energy Build. 2000, 32, 71–79. [Google Scholar] [CrossRef]
- Guzma, J.D.; Heras, M.R.; Alvarez, G.; Xama, J.; Arce, J.; Jiménez, M.J.; Guzmán, J.D.; Heras, M.R.; Alvarez, G.; Xamán, J. Experimental study for natural ventilation on a solar chimney. Renew. Energy 2009, 34, 2928–2934. [Google Scholar] [CrossRef]
- Harris, D.J.; Helwig, N. Solar chimney and building ventilation. Appl. Energy 2007, 84, 135–146. [Google Scholar] [CrossRef]
- Jing, H.; Chen, Z.; Li, A. Experimental study of the prediction of the ventilation flow rate through solar chimney with large gap-to-height ratios. Build. Environ. 2015, 89, 150–159. [Google Scholar] [CrossRef]
- Pretorius, J.P.; Kröger, D.G. Critical evaluation of solar chimney power plant performance. Sol. Energy 2006, 80, 535–544. [Google Scholar] [CrossRef]
- Sangi, R.; Amidpour, M.; Hosseinizadeh, B. Modeling and numerical simulation of solar chimney power plants. Sol. Energy 2011, 85, 829–838. [Google Scholar] [CrossRef]
- Miqdam, T.C.; Hussein, A.K. Basement kind effects on air temperature of a solar chimney in Baghdad-Iraq weather. Int. J. Appl. Sci. 2011, 2, 12–20. [Google Scholar] [CrossRef]
- Ninic, N. Available energy of the air in solar chimneys and the possibility of its ground-level concentration. Sol. Energy 2006, 80, 804–811. [Google Scholar] [CrossRef]
- Koonsrisuk, A.; Chitsomboon, T. Mathematical modeling of solar chimney power plants. Energy 2013, 51, 314–322. [Google Scholar] [CrossRef]
- Chantawong, P.; Hirunlabh, J.; Zeghmati, B.; Khedari, J.; Teekasap, S.; Win, M.M. Investigation on thermal performance of glazed solar chimney walls. Sol. Energy 2006, 80, 288–297. [Google Scholar] [CrossRef]
- Tingzhen, M.; Wei, L.; Yuan, P. Numerical analysis of the solar chimney power plant with energy storage layer. In Proceedings of the ISES Solar World Congress; Springer: Berlin, Germany, 2007; Volume 3, pp. 1800–1805. [Google Scholar]
- Ghalamchi, M.; Kasaeian, A.; Ghalamchi, M.; Mirzahosseini, A.H. An experimental study on the thermal performance of a solar chimney with different dimensional parameters. Renew. Energy 2016, 91, 477–483. [Google Scholar] [CrossRef]
- Hamdan, M.O. Analysis of a solar chimney power plant in the Arabian Gulf region. Renew. Energy 2011, 36, 2593–2598. [Google Scholar] [CrossRef]
- Koonsrisuk, A.; Lorente, S.; Bejan, A. Constructal solar chimney configuration. Int. J. Heat. Mass. Transf. 2010, 53, 327–333. [Google Scholar] [CrossRef]
- Saifi, N.; Settou, N.; Dokkar, B.; Negrou, B.; Chennouf, N. Experimental study and simulation of airflow in solar chimneys. Energy Procedia 2012, 18, 1289–1298. [Google Scholar] [CrossRef] [Green Version]
- Kasaeian, A.; Ghalamchi, M.; Ghalamchi, M. Simulation and optimization of geometric parameters of a solar chimney in Tehran. Energy Convers. Manag. 2014, 83, 28–34. [Google Scholar] [CrossRef]
- Guo, P.; Li, J.; Wang, Y.Y.; Wang, Y.Y. Numerical study on the performance of a solar chimney power plant. Energy Convers. Manag. 2015, 105, 197–205. [Google Scholar] [CrossRef]
- Ming, T.; de Richter, R.K.; Meng, F.; Pan, Y.; Liu, W. Chimney shape numerical study for solar chimney power generating systems. Int. J. Energy Res. 2013, 37, 310–322. [Google Scholar] [CrossRef]
- Maia, C.B.; Ferreira, A.G.; Valle, R.M.; Cortez, M.F.B. Theoretical evaluation of the influence of geometric parameters and materials on the behavior of the airflow in a solar chimney. Comput. Fluids 2009, 38, 625–636. [Google Scholar] [CrossRef]
- Fasel, H.F.; Meng, F.; Shams, E.; Gross, A. CFD analysis for solar chimney power plants. Sol. Energy 2013, 98, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Pastohr, H.; Kornadt, O.; Gürlebeck, K. Numerical and analytical calculations of the temperature and flow field in the upwind power plant. Int. J. Energy Res. 2004, 28, 495–510. [Google Scholar] [CrossRef]
- Bouabidi, A.; Ayadi, A.; Nasraoui, H.; Driss, Z.; Abid, M.S. Study of solar chimney in Tunisia: Effect of the chimney configurations on the local flow characteristics. Energy Build. 2018, 169, 27–38. [Google Scholar] [CrossRef]
- Abdelmohimen, M.A.H.; Algarni, S.A. Numerical investigation of solar chimney power plants performance for Saudi Arabia weather conditions. Sustain. Cities Soc. 2018, 38, 1–8. [Google Scholar] [CrossRef]
- Okoye, C.O.; Taylan, O. Performance analysis of a solar chimney power plant for rural areas in Nigeria. Renew. Energy 2017, 104, 96–108. [Google Scholar] [CrossRef]
- El-Haroun, A.A. Performance Evaluation of Solar Chimney Power Plants in Egypt. Int. J. Pure Appl. Sci. Technol. 2012, 13, 49–59. [Google Scholar]
- Sangi, R. Performance evaluation of solar chimney power plants in Iran. Renew. Sustain. Energy Rev. 2012, 16, 704–710. [Google Scholar] [CrossRef]
- Asnaghi, A.; Ladjevardi, S.M. Solar chimney power plant performance in Iran. Renew. Sustain. Energy Rev. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Maghrebi, M.J.; Masoudi Nejad, R.; Masoudi, S. Performance analysis of sloped solar chimney power plants in the southwestern region of Iran. Int. J. Ambient Energy 2017, 38, 542–549. [Google Scholar] [CrossRef]
- Larbi, S.; Bouhdjar, A.; Chergui, T. Performance analysis of a solar chimney power plant in the southwestern region of Algeria. Renew. Sustain. Energy Rev. 2010, 14, 470–477. [Google Scholar] [CrossRef]
- Larbi, S.; Bouhdjar, A.; Meliani, K.; Taghourt, A.; Semai, H. Solar chimney power plant with heat storage system performance analysis in South Region of Algeria. In Proceedings of the IEEE 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 10–13 December 2015; pp. 1–6. [Google Scholar]
- Rabehi, R.; Chaker, A.; Aouachria, Z.; Tingzhen, M. CFD analysis on the performance of a solar chimney power plant system: Case study in Algeria. Int. J. Green Energy 2017, 14, 971–982. [Google Scholar] [CrossRef]
- Nizetic, S.; Ninic, N.; Klarin, B. Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region. Energy 2008, 33, 1680–1690. [Google Scholar] [CrossRef]
- Okoye, C.O.; Atikol, U. A parametric study on the feasibility of solar chimney power plants in North Cyprus conditions. Energy Convers. Manag. 2014, 80, 178–187. [Google Scholar] [CrossRef]
- Guo, P.; Li, J.; Wang, Y. Annual performance analysis of the solar chimney power plant in Sinkiang, China. Energy Convers. Manag. 2014, 87, 392–399. [Google Scholar] [CrossRef]
- Cao, F.; Zhao, L.; Li, H.; Guo, L. Performance analysis of conventional and sloped solar chimney power plants in China. Appl. Therm. Eng. 2013, 50, 582–592. [Google Scholar] [CrossRef]
- Ahmed, M.R.; Patel, S.K. Computational and experimental studies on solar chimney power plants for power generation in Pacific Island countries. Energy Convers. Manag. 2017, 149, 61–78. [Google Scholar] [CrossRef]
- Akhtar, Z.; Rao, K.V.S. Study of economic viability of 200 MW solar chimney power plant in Rajasthan, India. In Proceedings of the IEEE 1st International Conference on Non Conventional Energy (ICONCE 2014), Kalyani, India, 16–17 January 2014; pp. 84–88. [Google Scholar]
- Zuo, L.; Zheng, Y.; Li, Z.; Sha, Y. Solar chimneys integrated with sea water desalination. Desalination 2011, 276, 207–213. [Google Scholar] [CrossRef]
- Zuo, L.; Yuan, Y.; Li, Z.; Zheng, Y. Experimental research on solar chimneys integrated with seawater desalination under practical weather condition. Desalination 2012, 298, 22–33. [Google Scholar] [CrossRef]
- Asayesh, M.; Kasaeian, A.; Ataei, A. Optimization of a combined solar chimney for desalination and power generation. Energy Convers. Manag. 2017, 150, 72–80. [Google Scholar] [CrossRef]
- Niroomand, N.; Amidpour, M. New combination of solar chimney for power generation and seawater desalination. Desalin. Water Treat. 2013, 51, 7401–7411. [Google Scholar] [CrossRef] [Green Version]
- Fluri, T.P.; Pretorius, J.P.; Van Dyk, C.; Von Backström, T.W.; Kröger, D.G.; Zijl, G.P.A.G.V. Cost analysis of solar chimney power plants. Sol. Energy 2009, 83, 246–256. [Google Scholar] [CrossRef]
- Kiwan, S.; Salam, Q.I.A. Solar chimney power-water distillation plant (SCPWDP). Desalination 2018, 445, 105–114. [Google Scholar] [CrossRef]
- Schlaich, J.; Bergermann, R.; Schiel, W.; Weinrebe, G. Sustainable electricity generation with solar updraft towers. Struct. Eng. Int. J. Int. Assoc. Bridg. Struct. Eng. 2004, 14, 225–229. [Google Scholar] [CrossRef]
- Bernardes, M. Technical, Economical and Ecological Analysis of Solar Chimney Power Plants. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2004. [Google Scholar]
- Towler, G.; Sinnott, R. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 0080966608. [Google Scholar]
- Solar-Plus-Storage Beats Combined-Cycle Gas in Jordan and Morocco|Greentech Media. Available online: https://www.greentechmedia.com/articles/read/solar-storage-beats-combined-cycle-gas-in-jordan-and-morocco (accessed on 4 May 2020).
- Renewable Power Generation Costs In 2018; IRENA: Abu Dhabi, UAE, 2019; ISBN 978-92-9260-126-3.
- Breeze, P. The Cost of Electricity from Wind Turbines. In Wind Power Generation; Elsevier: Amsterdam, The Netherlands, 2016; pp. 93–97. [Google Scholar]
Aim of the Study | Author(s) |
---|---|
Develop a new simulation models. | Chergui et al. [16], Bilgen and Rheault [17] |
Introduce multi turbo generators and power electronics. | Fluri and Von Backstrom [18] |
Induce ventilation system using roof solar chimney. | Mathur et al. [19], Afonso and Oliveira [20], Arce et al. [21], and Harris and Helwig [17], [22] |
Improve modeling equations. | Jing et al. [23], Pretorious and Kroger [24], Sangi et al. [25] |
Use different absorber materials and collector types. | Miqdam and Hussein [26], Ninic [27], Koonsrisuk [28] and Chantawong et al. [29] |
Improve storing capabilities. | Ming et al. [30], Liu and Li [31] |
The relation between the geometric parameters of solar chimney and the power generation. | Hamdan [32], Koonsrisuk et al. [33], Jing et al. [23], Saifi et al. [34], and Kasaeian et al. [35] |
Numerical investigations. | Guo et al. [36], Ming et al. [37], Maia et al. [38], Fasel et al. [39], Pastohr et al. [40] |
Location | Author(s) | Year | Contribution |
---|---|---|---|
Tunisia | Bouabidi et al. [41] | 2018 | Effect of the chimney configurations on the local flow characteristics. |
Saudi Arabia | Abdelmohimen et al. [42] | 2018 | Numerical investigation of solar chimney power plants performance. |
Nigeria | Okoye et al. [43] | 2017 | Performance analysis of SCPP using hourly weather data of seven selected regions. A theoretical model was established for power output, levelized cost of electricity (LCOE) and carbon emission predictions. |
Egypt | El- Haroun [44] | 2012 | Performance evaluation of SCPP in some locations in Egypt theoretically to make an approximation of the quantity of the generated electrical energy. |
Iran | Sangi [45], Asnaghi [46], Maghrebi et al. [47], Kasaeian et al. [35] | 2012, 2012, 2017, 2014 | Performance evaluation, simulation and optimization of different SCPP models in different locations across Iran. |
Arabian Gulf region | Hamdan [32] | 2011 | Propose A simplified thermodynamics analytical model for steady airflow inside a solar chimney. Evaluate the effect of geometric parameters on the solar plant power generation. |
Algeria | Larbi et al. [48], Larbi et al. [49], Rabehi et al. [50] | 2010, 2015, 2017 | Performance and CFD analysis of different SCPP Models across regions in Algeria. |
Mediterranean region | Nizetic et al. [51] | 2008 | Analysis and feasibility of implementing solar chimney. |
Cyprus | Okoye et al. [52] | 2014 | A parametric study on the feasibility of solar chimney. |
China | Guo et al. [53], Cao et al. [54] | 2014, 2013 | Annual performance analysis of the solar chimney power plant in Sinkiang. Performance analysis of conventional and sloped solar chimney power plants in China. |
Pacific Island Countries | Ahmed and Patel [55] | 2017 | Computational and experimental studies on solar chimney power plants for power generation in Pacific Island countries. |
India | Akhtar and Rao [56] | 2014 | Study of economic viability of 200 MW solar chimney power plant. |
Parameter | Dimension, m |
---|---|
Collector Diameter | 250 |
Collector Entrance Height | 6 |
Chimney Height | 200 |
Chimney Diameter | 10 |
Water Pool Depth | 0.03 |
Material Characteristic | Value |
---|---|
Glass Transmissivity | 0.90 |
Glass Emissivity | 0.90 |
Glass Absorptivity | 0.05 |
Water Transmissivity | 0.90 |
Water Emissivity | 0.95 |
Water Absorptivity | 0.05 |
Base Absorptivity | 0.95 |
Base Emissivity | 0.95 |
Time | Global Horizontal Solar Irradiation (W/m2) | Ambient Temperature (°C) | Wind Speed (m/s) | Time | Global Horizontal Solar Irradiation (W/m2) | Ambient Temperature (°C) | Wind Speed (m/s) |
---|---|---|---|---|---|---|---|
0:00 | 0.00 | 30.86 | 7.10 | 12:00 | 985.60 | 41.05 | 5.00 |
1:00 | 0.00 | 29.91 | 6.80 | 13:00 | 909.40 | 41.63 | 4.70 |
2:00 | 0.00 | 29.41 | 6.20 | 14:00 | 772.79 | 41.84 | 3.40 |
3:00 | 0.00 | 29.06 | 4.70 | 15:00 | 589.90 | 41.62 | 3.90 |
4:00 | 0.71 | 29.02 | 3.70 | 16:00 | 380.11 | 40.85 | 4.10 |
5:00 | 103.40 | 30.03 | 4.30 | 17:00 | 174.31 | 39.67 | 3.30 |
6:00 | 295.21 | 31.66 | 3.40 | 18:00 | 8.90 | 38.24 | 2.90 |
7:00 | 507.10 | 33.55 | 4.10 | 19:00 | 0.00 | 36.90 | 3.40 |
8:00 | 701.90 | 35.47 | 5.00 | 20:00 | 0.00 | 35.55 | 4.70 |
9:00 | 854.79 | 37.26 | 5.90 | 21:00 | 0.00 | 34.20 | 3.90 |
10:00 | 957.60 | 38.83 | 5.90 | 22:00 | 0.00 | 32.86 | 2.80 |
11:00 | 1000.20 | 40.1 | 5.40 | 23:00 | 0.00 | 31.51 | 3.40 |
Month | Average Monthly Global Solar Irradiation (kWh/m2) | Electric Power (kWh) | Distilled Water (ton) |
---|---|---|---|
January | 112.06 | 21,846.24 | 4662.90 |
February | 126.61 | 26,542.74 | 6066.50 |
March | 186.81 | 42,384.30 | 10,054.61 |
April | 206.22 | 47,485.61 | 12,041.33 |
May | 233.99 | 53,760.64 | 14,072.61 |
June | 248.17 | 57,934.94 | 14,975.27 |
July | 248.90 | 57,222.29 | 14,700.75 |
August | 232.43 | 52,992.54 | 14,778.50 |
September | 192.43 | 42,322.52 | 11,846.42 |
October | 160.64 | 33,813.33 | 9511.02 |
November | 122.69 | 24,201.08 | 6185.75 |
December | 108.23 | 20,934.28 | 4857.83 |
Sum | 2179 | 481,440 | 123,753 |
CAPEX | Cost, $US | Reference |
---|---|---|
Chimney column | 346,611 | Equation (13) |
Glass Base | 35,000 | $200/m2 |
Concert basin | 50,000 | $300/m2 |
Turbine | 403,453 | Equation (13) |
Installation cost | 417,532 | Installation cost factor for Jordan assumed 0.039 |
Total | 1,252,596 |
OPEX | Cost, $US/Day | Cost, $US/Annual | Reference |
---|---|---|---|
Anti-corrosion chemicals | 10 | 3500 | |
Pumps | 10 | 3500 | |
Maintenance | 10 | 3500 | |
Labors | 20 | 7000 | |
Credit value produced electricity | −6.211 | −2173.97 | $93/MWh cost in Jordan |
Total | 44 | 15,326 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelsalam, E.; Kafiah, F.; Alkasrawi, M.; Al-Hinti, I.; Azzam, A. Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP). Energies 2020, 13, 2789. https://doi.org/10.3390/en13112789
Abdelsalam E, Kafiah F, Alkasrawi M, Al-Hinti I, Azzam A. Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP). Energies. 2020; 13(11):2789. https://doi.org/10.3390/en13112789
Chicago/Turabian StyleAbdelsalam, Emad, Feras Kafiah, Malek Alkasrawi, Ismael Al-Hinti, and Ahmad Azzam. 2020. "Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP)" Energies 13, no. 11: 2789. https://doi.org/10.3390/en13112789
APA StyleAbdelsalam, E., Kafiah, F., Alkasrawi, M., Al-Hinti, I., & Azzam, A. (2020). Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP). Energies, 13(11), 2789. https://doi.org/10.3390/en13112789