Experimental and Numerical Analysis of a 10 MW Floating Offshore Wind Turbine in Regular Waves
Abstract
:1. Introduction
2. Model Test
2.1. Model Test Procedure
2.2. Model Test Procedure.
2.3. Experimental Setup
2.4. Effect of the Mooring Tables
2.5. Current-Imitating Device
2.6. Other Equipment
3. Numerical Simulation
4. Load Cases
- LC1_NC: Regular waves, No wind, No current
- LC1_WC: Regular waves, No wind, With current
- LC2_NC: Regular waves, Rated wind, No current
- LC2_WC: Regular waves, Rated wind, With current
5. Results and Discussion
5.1. Free-Decaying Test
5.2. RAO
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CAE | Computer-Aided Engineering |
CM | Center of Mass |
DOF | Degrees Of Freedom |
FAST | Fatigue, Aerodynamics, Structures, and Turbulence |
FOWT | Floating Offshore Wind Turbine |
JONSWAP | JOint North Sea WAve observation Project |
LC | Load Case |
NC | No Current condition |
NREL | National Renewable Energy Laboratory |
PM | Pierson-Moskowitz |
RAO | Response Amplitude Operator |
SWL | Still-Water Level |
UOU | University Of Ulsan |
WC | With Current condition |
References
- Song, X.; Bührer, C.; Mølgaard, A.; Andersen, R.; Brutsaert, P.; Bauer, M.; Hansen, J.; Rebsdorf, A.V.; Kellers, J.; Winkler, T.; et al. Commissioning of the World’s First Full-scale MW-class Superconducting Generator on a Direct Drive Wind Turbine. IEEE Trans. Energy Convers. 2020. [Google Scholar] [CrossRef]
- Miura, S.; Iwakuma, M.; Izumi, T. Lightweight Design of Tens-MW Fully-Superconducting Wind Turbine Generators with High-performance REBa2Cu3Oy Wires. IEEE Trans. Appl. Supercond. 2020, 30, 1–6. [Google Scholar] [CrossRef]
- Ennis, B.L.; Kelley, C.L.; Naughton, B.T.; Norris, R.E.; Das, S.; Lee, D.; Miller, D.A. Optimized Carbon Fiber Composites in Wind Turbine Blade Design; Report No. SAND2019-14173; Sandia National Laboratories: Albuquerque, New Mexico, 2019. [Google Scholar]
- Sessarego, M.; Ramos-García, N.; Yang, H.; Shen, W.Z. Aerodynamic wind-turbine rotor design using surrogate modeling and three-dimensional viscous–inviscid interaction technique. Renew. Energy 2016, 93, 620–635. [Google Scholar]
- Satkauskas, I.; Gaertner, E.; Bortolotti, P.; Barter, G.; Graf, P.A. Wind Turbine Rotor Design Optimization Using Importance Sampling. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 1953. [Google Scholar]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development (No. NREL/TP-500-38060); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2009. [Google Scholar]
- Jonkman, J. Definition of the Floating System for Phase IV of OC3 (No. NREL/TP-500-47535); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2010. [Google Scholar]
- Jonkman, J.; Musial, W. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2010. [Google Scholar]
- Robertson, A.; Jonkman, J.; Masciola, M.; Song, H.; Goupee, A.; Coulling, A.; Luan, C. Definition of the Semisubmersible Floating System for Phase II of OC4; (No. NREL/TP-5000-60601); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2014. [Google Scholar]
- Azcona, J.; Vittori, F.; Schmidt, U.; Svanije, F.; Kapogiannis, G.; Karvelas, X.; Manolas, D.; Voutsinas, S.; Amann, F.; Faerron-Guzman, R.; et al. Design Solutions for 10 MW Floating Offshore Wind Turbines. INNWIND. EU, Deliverable D 2017, 4, 37. [Google Scholar]
- Bak, C.; Zahle, F.; Bitsche, R.; Kim, T.; Yde, A.; Henriksen, L.C.; Hansen, M.H.; Blasques, J.P.A.A.; Gaunaa, M.; Natarajan, A. The DTU 10-MW reference wind turbine. In Danish Wind Power Research; National Renewable Energy Laboratory: Lyngby, Denmark, 2013. [Google Scholar]
- NN UpWind. Design Limits and Solutions for Very Large wind Turbines; EWEA: Brussels, Belgium, 2011. [Google Scholar]
- Griffith, D.T.; Ashwill, T.D. The Sandia 100-Meter All-Glass Baseline wind Turbine Blade: SNL100-00; Report No. SAND2011-3779; Sandia National Laboratories: Albuquerque, New Mexico, 2011. [Google Scholar]
- Müller, K.; Sandner, F.; Bredmose, H.; Azcona, J.; Manjock, A.; Pereira, R. Improved Tank Test Procedures for Scaled Floating Offshore Wind Turbines. In Proceedings of the International Wind Engineering Conference IWEC, Hannover, Germany, 3–5 September 2014. [Google Scholar]
- Ahn, H.-J.; Shin, H. Model test and numerical simulation of OC3 spar type floating offshore wind turbine. Int. J. Nav. Arch. Ocean Eng. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Shin, H.; Dam, P.T.; Jung, K.J.; Rim, C.; Chung, T. Model test of new floating offshore wind turbine platforms. Int. J. Nav. Arch. Ocean Eng. 2013, 5, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Shin, H. Model test of the OC3-Hywind floating offshore wind turbine. In Proceedings of the Twenty-First International Offshore and Polar Engineering Conference, Maui, HI, USA, 19–24 June 2011. [Google Scholar]
- Shin, H.; Kim, B.; Dam, P.T.; Jung, K. Motion of OC4 5MW Semi-submersible Offshore Wind Turbine in irregular waves. In Proceedings of the 32nd International Conference on Ocean Offshore & Arctic Engineering, Nantes, France, 9–14 June 2013. [Google Scholar]
- Pham, T.D.; Shin, H. Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part I: Model-I. Int. J. Nav. Arch. Ocean Eng. 2019, 11, 980–992. [Google Scholar] [CrossRef]
- Kim, J.; Shin, H.; Pham, T.D. Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part II: Model-II. Int. J. Nav. Arch. Ocean Eng. 2020, 12, 213–225. [Google Scholar] [CrossRef]
- Jonkman, J.M.; Buhl, M.L., Jr. FAST User’s Guide. National Renewable Energy Laboratory; Technical Report No. NREL/EL-500-38230; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2005. [Google Scholar]
- IEC. 61400-3, Wind Turbines-Part 3: Design Requirements for Offshore Wind Turbines; International Electrotechnical Commission: Geneva, Switzerland, 2009. [Google Scholar]
- Rojas Castro, I. Design of a 10MW Wind Turbine Rotor Blade for Testing of a Scaled-Down Floating Offshore Support Structure; Delft University of Technology: Lyngby, Denmark, 2017. [Google Scholar]
- Kim, K.-H.; Hong, J.P.; Park, S.; Lee, K.; Hong, K. An Experimental Study on Dynamic Performance of Large Floating Wave-Offshore Hybrid Power Generation Platform in Extreme Conditions. J. Korean Soc. Mar. Environ. Energy 2016, 19, 7–17. [Google Scholar] [CrossRef]
- Stewart, G.; Lackner, M.; Robertson, A.; Jonkman, J.; Goupee, A. Calibration and Validation of a FAST Floating Wind Turbine Model of the DeepCwind Scaled Tension-Leg Platform; No. NREL/CP-5000-54822; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2012. [Google Scholar]
- Lamei, A.; Hayatdavoodi, M. On motion analysis and elastic response of floating offshore wind turbines. J. Ocean Eng. Mar. Energy 2020, 6, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Guo, T. The Comparison and Analysis of Classic Deep-Sea Floating Platforms’ Hydrodynamic. In Proceedings of the International Conference on Information Technology and Electrical Engineering, Guangzhou, China, 7–9 December 2018; pp. 1–4. [Google Scholar]
- Ibinabo, I.; Tamunodukobipi, D.T. Determination of the Response Amplitude Operator(s) of an FPSO. Engineering 2019, 11, 541–556. [Google Scholar] [CrossRef] [Green Version]
- Salzmann, D.C.; Van der Tempel, J. Aerodynamic damping in the design of support structures for offshore wind turbines. In Proceedings of the Paper of the Copenhagen Offshore Conference, Copenhagen, Denmark, 26–28 October 2005. [Google Scholar]
- Ramachandran, G.K.V.; Robertson, A.; Jonkman, J.M.; Masciola, M.D. Investigation of Response Amplitude Operators for Floating Offshore Wind Turbines; No. NREL/CP-5000-58098; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2013. [Google Scholar]
Description | UOU 10 MW | NREL 5 MW |
---|---|---|
Rating [kW] | 10,000 | 5000 |
Rotor orientation; configuration | Upwind; three blades | Upwind; three blades |
Rotor diameter [m] | 178.2 | 126.0 |
Hub height [m] | 120 | 90 |
Cut-in, rated, and cut-out wind speed [m/s] | 3, 11.2, 25 | 3, 11.4, 25 |
Rated rotor speed [rpm] | 9.48 | 12.10 |
Rotor mass [kg] | 222,940 | 110,000 |
Nacelle mass [kg] | 409,200 | 240,000 |
Tower mass [kg] | 572,670 | 347,460 |
Description | UOU 10 MW | NREL 5 MW |
---|---|---|
Water depth [m] | 144 | 200 |
Platform mass, including ballast [kg] | 27,119,000 | 13,473,000 |
Displaced water in undisplaced position [m3] | 28,030 | 13,917 |
Depth of platform base below SWL (total draft) [m] | 25.2 | 20.0 |
Center of buoyancy below SWL [m] | 16.57 | 13.15 |
CM location below SWL [m] | 17.13 | 13.46 |
Platform roll inertia about CM [kgm2] | 2.14 × | 6.83 × |
Platform pitch inertia about CM [kgm2] | 2.14 × | 6.83 × |
Platform yaw inertia about CM [kgm2] | 3.75 × | 1.23 × |
Parameter | Full Scale (1:1) | Model Scale (1:90) | Actual Model (Measured) | Difference |
---|---|---|---|---|
Rotor and nacelle mass [kg] | 632,140 | 0.867 | 0.87 | 0.35% |
Tower mass [kg] | 572,670 | 0.786 | 0.81 | 3.05% |
Platform mass [kg] | 27,119,000 | 37.200 | 36.62 | −1.56% |
CM of the platform from SWL [m] | −17.13 | −0.190 | −0.19 | 0.00% |
Ixx of the platform [kgm2] | 2.14 × | 3.624 | 3.45 | −4.80% |
Iyy of the platform [kgm2] | 2.14 × | 3.624 | 3.45 | −4.80% |
Total wind turbine mass [kg] | 28,323,810 | 38.853 | 38.30 | −1.42% |
1 mooring line mass density [kg/m] | 542 | 0.067 | 0.068 | 1.49% |
Mooring line nominal diameter [mm] | 142 | 1.578 | 1.57 | −0.51% |
Mooring line length [m] | 950 | 10.556 | 10.56 | 0.04% |
Parameter | Full Scale (1:1) | Model Scale (1:90) | Actual Model (Measured) | Difference |
---|---|---|---|---|
Rated wind speed [m/s] | 11.20 | 1.181 | 1.05 | −11.09% |
Rated rotor speed [rpm] | 9.48 | 89.935 | 90 | 0.07% |
Rated thrust force [N] | 1,657,000 | 2.273 | 2.22 | −2.33% |
Model Scale (1:90) | Water Depth: 1.6 m (Using the Mooring Table) | Water Depth: 2.5 m (No Mooring Table) | |||
---|---|---|---|---|---|
Waves | Wave Period [s] | Wavelength [m] | Depth | Wavelength [m] | Depth |
1 | 0.580 | 0.525 | Deep | 0.525 | Deep |
2 | 0.637 | 0.634 | Deep | 0.634 | Deep |
3 | 0.707 | 0.780 | Deep | 0.780 | Deep |
4 | 0.793 | 0.982 | Deep | 0.982 | Deep |
5 | 0.904 | 1.276 | Deep | 1.276 | Deep |
6 | 1.051 | 1.725 | Deep | 1.725 | Deep |
7 | 1.255 | 2.458 | Deep | 2.459 | Deep |
8 | 1.557 | 3.750 | Finite | 3.783 | Deep |
9 | 2.050 | 6.094 | Finite | 6.461 | Finite |
10 | 3.000 | 10.463 | Finite | 12.102 | Finite |
Load Cases | Model Scale (1:90) | Full Scale (1:1) | ||||||
---|---|---|---|---|---|---|---|---|
Waves [-] | Wind [m/s] | Rotor [rpm] | Current [m/s] | Waves [-] | Wind [m/s] | Rotor [rpm] | Current [m/s] | |
LC1_NC | 10 Regular waves | - | - | - | 10 Regular waves | - | - | - |
LC1_WC | 0.17 | 1.63 | ||||||
LC2_NC | 1.18 | 89.94 | - | 11.20 | 9.48 | - | ||
LC2_WC | 0.17 | 1.63 |
Wave Number | Model Scale (1:90) | Full Scale (1:1) | ||||||
---|---|---|---|---|---|---|---|---|
Height [m] | Period [s] | Frequency | Height [m] | Period [s] | Frequency | |||
[rad/s] | [Hz] | [rad/s] | [Hz] | |||||
1 | 0.030 | 0.580 | 10.833 | 1.724 | 2.670 | 5.500 | 1.142 | 0.182 |
2 | 0.030 | 0.637 | 9.862 | 1.570 | 2.670 | 6.040 | 1.040 | 0.166 |
3 | 0.030 | 0.707 | 8.891 | 1.415 | 2.670 | 6.700 | 0.938 | 0.149 |
4 | 0.030 | 0.793 | 7.920 | 1.261 | 2.670 | 7.530 | 0.834 | 0.133 |
5 | 0.030 | 0.904 | 6.949 | 1.106 | 2.670 | 8.580 | 0.732 | 0.117 |
6 | 0.030 | 1.051 | 5.978 | 0.951 | 2.670 | 9.970 | 0.630 | 0.100 |
7 | 0.030 | 1.255 | 5.007 | 0.797 | 2.670 | 11.900 | 0.528 | 0.084 |
8 | 0.030 | 1.557 | 4.036 | 0.642 | 2.670 | 14.770 | 0.425 | 0.068 |
8.5 | 0.030 | 1.757 | 3.576 | 0.569 | 2.670 | 16.667 | 0.374 | 0.060 |
9 | 0.030 | 2.050 | 3.065 | 0.488 | 2.670 | 19.450 | 0.323 | 0.051 |
9.5 | 0.030 | 2.451 | 2.564 | 0.408 | 2.670 | 23.256 | 0.272 | 0.043 |
10 | 0.030 | 3.000 | 2.094 | 0.333 | 2.670 | 28.460 | 0.221 | 0.035 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, H.; Shin, H. Experimental and Numerical Analysis of a 10 MW Floating Offshore Wind Turbine in Regular Waves. Energies 2020, 13, 2608. https://doi.org/10.3390/en13102608
Ahn H, Shin H. Experimental and Numerical Analysis of a 10 MW Floating Offshore Wind Turbine in Regular Waves. Energies. 2020; 13(10):2608. https://doi.org/10.3390/en13102608
Chicago/Turabian StyleAhn, Hyeonjeong, and Hyunkyoung Shin. 2020. "Experimental and Numerical Analysis of a 10 MW Floating Offshore Wind Turbine in Regular Waves" Energies 13, no. 10: 2608. https://doi.org/10.3390/en13102608
APA StyleAhn, H., & Shin, H. (2020). Experimental and Numerical Analysis of a 10 MW Floating Offshore Wind Turbine in Regular Waves. Energies, 13(10), 2608. https://doi.org/10.3390/en13102608