Analyzing the Criteria of Efficient Carbon Capture and Separation Technologies for Sustainable Clean Energy Usage
Abstract
1. Introduction
2. Literature Review
3. Methodology of the Analytic Network Process
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Sub-Factors | Pairwise Comparison Values | Normalized Values | E.V | CI | CR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S.F1 | S.F2 | S.F3 | S.F4 | S.F5 | S.F6 | S.F1 | S.F2 | S.F3 | S.F4 | S.F5 | S.F6 | ||||
Training (sub-factor1) | 1.00 | 3.00 | 2.00 | 3.00 | 3.00 | 3.00 | 0.35 | 0.54 | 0.32 | 0.29 | 0.17 | 0.30 | 0.329 | 0.075 | 0.060 |
Personnel efficiency (sub-factor 2) | 0.33 | 1.00 | 2.00 | 3.00 | 5.00 | 2.00 | 0.12 | 0.18 | 0.32 | 0.29 | 0.28 | 0.20 | 0.232 | ||
Engineering improvements (sub-factor 3) | 0.50 | 0.50 | 1.00 | 2.00 | 5.00 | 2.00 | 0.18 | 0.09 | 0.16 | 0.19 | 0.28 | 0.20 | 0.183 | ||
Technological infrastructure (sub-factor 4) | 0.33 | 0.33 | 0.50 | 1.00 | 3.00 | 1.00 | 0.12 | 0.06 | 0.08 | 0.10 | 0.17 | 0.10 | 0.104 | ||
Benchmarking (sub-factor 5) | 0.33 | 0.20 | 0.20 | 0.33 | 1.00 | 1.00 | 0.12 | 0.04 | 0.03 | 0.03 | 0.06 | 0.10 | 0.062 | ||
Socio-demographic competencies (sub-factor 6) | 0.33 | 0.50 | 0.50 | 1.00 | 1.00 | 1.00 | 0.12 | 0.09 | 0.08 | 0.10 | 0.06 | 0.10 | 0.090 |
Sub-Factors | Pairwise Comparison Values | Normalized Values | E.V | CI | CR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S.F1 | S.F2 | S.F3 | S.F4 | S.F5 | S.F6 | S.F1 | S.F2 | S.F3 | S.F4 | S.F5 | S.F6 | ||||
Training (sub-factor 1) | 1.00 | 3.00 | 3.00 | 5.00 | 7.00 | 9.00 | 0.47 | 0.58 | 0.40 | 0.30 | 0.38 | 0.32 | 0.409 | 0.113 | 0.091 |
Personnel efficiency (sub-factor 2) | 0.33 | 1.00 | 3.00 | 3.00 | 3.00 | 7.00 | 0.16 | 0.19 | 0.40 | 0.18 | 0.16 | 0.25 | 0.224 | ||
Engineering improvements (sub-factor 3) | 0.33 | 0.33 | 1.00 | 7.00 | 5.00 | 5.00 | 0.16 | 0.06 | 0.13 | 0.42 | 0.27 | 0.18 | 0.204 | ||
Technological infrastructure (sub-factor 4) | 0.20 | 0.33 | 0.14 | 1.00 | 2.00 | 3.00 | 0.09 | 0.06 | 0.02 | 0.06 | 0.11 | 0.11 | 0.076 | ||
Benchmarking (sub-factor 5) | 0.14 | 0.33 | 0.20 | 0.50 | 1.00 | 3.00 | 0.07 | 0.06 | 0.03 | 0.03 | 0.05 | 0.11 | 0.058 | ||
Socio-demographic competencies (sub-factor 6) | 0.11 | 0.14 | 0.20 | 0.33 | 0.33 | 1.00 | 0.05 | 0.03 | 0.03 | 0.02 | 0.02 | 0.04 | 0.030 |
Sub-Factors | Pairwise Comparison Values | Normalized Values | E.V | CI | CR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S.F1 | S.F2 | S.F3 | S.F4 | S.F5 | S.F6 | S.F1 | S.F2 | S.F3 | S.F4 | S.F5 | S.F6 | ||||
Training (sub-factor 1) | 1.00 | 2.00 | 1.00 | 1.00 | 2.00 | 2.00 | 0.22 | 0.40 | 0.19 | 0.15 | 0.18 | 0.17 | 0.217 | 0.080 | 0.065 |
Personnel efficiency (sub-factor 2) | 0.50 | 1.00 | 1.00 | 3.00 | 3.00 | 3.00 | 0.11 | 0.20 | 0.19 | 0.44 | 0.27 | 0.25 | 0.243 | ||
Engineering improvements (sub-factor 3) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 3.00 | 0.22 | 0.20 | 0.19 | 0.15 | 0.09 | 0.25 | 0.183 | ||
Technological infrastructure (sub-factor 4) | 1.00 | 0.33 | 1.00 | 1.00 | 3.00 | 2.00 | 0.22 | 0.07 | 0.19 | 0.15 | 0.27 | 0.17 | 0.177 | ||
Benchmarking (sub-factor 5) | 0.50 | 0.33 | 1.00 | 0.33 | 1.00 | 1.00 | 0.11 | 0.07 | 0.19 | 0.05 | 0.09 | 0.08 | 0.098 | ||
Socio-demographic competencies (sub-factor 6) | 0.50 | 0.33 | 0.33 | 0.50 | 1.00 | 1.00 | 0.11 | 0.07 | 0.06 | 0.07 | 0.09 | 0.08 | 0.081 |
References
- Chi, Y.; Yang, P.; Ren, S.; Ma, N.; Yang, J.; Xu, Y. Effects of fertilizer types and water quality on carbon dioxide emissions from soil in wheat-maize rotations. Sci. Total Environ. 2020, 698, 134010. [Google Scholar] [CrossRef]
- Yüksel, S.; Ubay, G.G. Identifying the influencing factors of renewable energy consumption in Turkey with MARS methodology. Ekonomi İşletme ve Maliye Araştırmaları Dergisi 2020, 2, 1–14. [Google Scholar]
- Wen, W.; Wang, Q. Re-examining the realization of provincial carbon dioxide emission intensity reduction targets in China from a consumption-based accounting. J. Clean. Prod. 2020, 244, 118488. [Google Scholar] [CrossRef]
- Benjamin, N.I.; Lin, B. Quantile analysis of carbon emissions in China metallurgy industry. J. Clean. Prod. 2020, 243, 118534. [Google Scholar] [CrossRef]
- Liu, L.; Jin, S.; Ko, K.; Kim, H.; Ahn, I.S.; Lee, C.H. Alkyl-functionalization of (3-Aminopropyl) triethoxysilane-grafted zeolite beta for carbon dioxide capture in temperature swing adsorption. Chem. Eng. J. 2020, 382, 122834. [Google Scholar] [CrossRef]
- Erans, M.; Nabavi, S.A.; Manović, V. Carbonation of lime-based materials under ambient conditions for direct air capture. J. Clean. Prod. 2020, 242, 118330. [Google Scholar] [CrossRef]
- Llamas, B.; Ortega, M.F.; García, M.J.; Mora, P. Carbon Storage and Utilization as a Local Response to Use Fossil Fuels in a Sustainable Manner. In Sustaining Resources for Tomorrow; Springer: Cham, Switzerland, 2020; pp. 275–290. [Google Scholar]
- Diefenbach, U.; Wald, A.; Gleich, R. Between cost and benefit: Investigating effects of cost management control systems on cost efficiency and organisational performance. J. Manag. Control 2018, 29, 63–89. [Google Scholar] [CrossRef]
- Ruiz-Rosa, I.; García-Rodríguez, F.J.; Mendoza-Jiménez, J. Development and application of a cost management model for wastewater treatment and reuse processes. J. Clean. Prod. 2016, 113, 299–310. [Google Scholar] [CrossRef]
- Wouters, M.; Morales, S.; Grollmuss, S.; Scheer, M. Methods for cost management during product development: A review and comparison of different literatures. In Advances in Management Accounting; Emerald Group Publishing Limited: London, UK, 2016; pp. 139–274. [Google Scholar]
- Sun, H. Permeation of Computer Technology in Enterprise Management. In Proceedings of the 2016 International Conference on Economics, Social Science, Arts, Education and Management Engineering, Changsha, China, 30–31 July 2016. [Google Scholar]
- Mo, L. The Application Analysis of BIM Technology in Whole-Process of Engineering Cost Management. In Proceedings of the 2018 International Conference on Engineering Simulation and Intelligent Control (ESAIC), Changsha, China, 10–11 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 404–406. [Google Scholar]
- Henri, J.F.; Boiral, O.; Roy, M.J. Strategic cost management and performance: The case of environmental costs. Br. Account. Rev. 2016, 48, 269–282. [Google Scholar] [CrossRef]
- Papagiannis, F.; Gazzola, P.; Burak, O.; Pokutsa, I. Overhauls in water supply systems in Ukraine: A hydro-economic model of socially responsible planning and cost management. J. Clean. Prod. 2018, 183, 358–369. [Google Scholar] [CrossRef]
- Durán, O.; Afonso, P.S.; Durán, P.A. Spare Parts Cost Management for Long-Term Economic Sustainability: Using Fuzzy Activity Based LCC. Sustainability 2019, 11, 1835. [Google Scholar] [CrossRef]
- Ashraf, J.; Uddin, S. New public management, cost savings and regressive effects: A case from a less developed country. Crit. Perspect. Account. 2016, 41, 18–33. [Google Scholar] [CrossRef]
- Xue, H.; Zhang, S.; Su, Y.; Wu, Z.; Yang, R.J. Effect of stakeholder collaborative management on off-site construction cost performance. J. Clean. Prod. 2018, 184, 490–502. [Google Scholar] [CrossRef]
- Smith, P. Global professional standards for project cost management. Procedia Soc. Behav. Sci. 2016, 226, 124–131. [Google Scholar] [CrossRef][Green Version]
- Botín, J.A.; Vergara, M.A. A cost management model for economic sustainability and continuos improvement of mining operations. Resour. Policy 2015, 46, 212–218. [Google Scholar] [CrossRef]
- Schindler, M.; Danis, M.; Goold, S.D.; Hurst, S.A. Solidarity and cost management: Swiss citizens’ reasons for priorities regarding health insurance coverage. Health Expect. 2018, 21, 858–869. [Google Scholar] [CrossRef]
- Smith, P. Project cost management with 5D BIM. Procedia Soc. Behav. Sci. 2016, 226, 193–200. [Google Scholar] [CrossRef]
- Pheng, L.S. Project cost management. In Project Management for the Built Environment; Springer: Singapore, 2018; pp. 97–112. [Google Scholar]
- Amir, A.; Auzair, S.M.; Amiruddin, R. Cost management, entrepreneurship and competitiveness of strategic priorities for small and medium enterprises. Procedia Soc. Behav. Sci. 2016, 219, 84–90. [Google Scholar] [CrossRef][Green Version]
- Miguel, A.; Madria, W.; Polancos, R. Project Management Model: Integrating Earned Schedule, Quality, and Risk in Earned Value Management. In Proceedings of the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), Tokyo, Japan, 12–15 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 622–628. [Google Scholar]
- Zhu, W.; He, Y.; Ren, H.; Wang, X.; Tian, H. The MonTe Carlo Method Application in Cost Risk Management of Pre-Transmission Line Project Based on Markov Chain. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Zhou, F.; Zhao, X.; Zhao, B. Promotion of Management Accounting to Cost Management and Management Decision in Small and Medium-sized Enterprises. In Proceedings of the 2018 International Conference on Management, Economics, Education and Social Sciences (MEESS 2018), Shanghai, China, 11–12 August 2018. [Google Scholar]
- Liu, X.; Liu, X.; Reid, C.D. Stakeholder orientations and cost management. Contemp. Account. Res. 2019, 36, 486–512. [Google Scholar] [CrossRef]
- Liu, S.; Wen, R. Elementary Analysis of Strategic Management Accounting. In Proceedings of the 2017 7th International Conference on Education, Management, Computer and Society (EMCS 2017), Shenyang, China, 17–19 March 2017. [Google Scholar]
- Katsakiori, P.; Sakellaropoulos, G.; Manatakis, E. Towards an evaluation of accident investigation methods in terms of their alignment with accident causation models. Saf. Sci. 2009, 47, 1007–1015. [Google Scholar] [CrossRef]
- Rachmawati, I.A.; Ardyanto, Y.D.; Soewandi, T. An analysis of the factor affecting substandard practice of personal protective equipment (PPE) usage in cement industry maintenance workers. Int. J. Public Health Clin. Sci. 2018, 5, 149–155. [Google Scholar]
- Wongchitphimon, S.; Lee, S.S.; Chuah, C.Y.; Wang, R.; Bae, T.H. Composite Materials for Carbon Capture. Mater. Carbon Capture 2020, 237–266. [Google Scholar] [CrossRef]
- Bolton, S.; Kasturi, A.; Palko, S.; Lai, C.; Love, L.; Parks, J.; Xin, S.; Tsouris, C. 3D printed structures for optimized carbon capture technology in packed bed columns. Sep. Sci. Technol. 2019, 54, 2047–2058. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kumar, A.; Zaworotko, M.J. Metal-organic framework based carbon capture and purification technologies for clean environment. In Metal-Organic Frameworks (MOFs) for Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 5–61. [Google Scholar]
- Fennell, P.S. Comparative Energy Analysis of Renewable Electricity and Carbon Capture and Storage. Joule 2019, 3, 1406–1408. [Google Scholar] [CrossRef]
- Roelofse, C.; Alves, T.M.; Gafeira, J.; Kamal’deen, O.O. An integrated geological and GIS-based method to assess caprock risk in mature basins proposed for carbon capture and storage. Int. J. Greenh. Gas Control 2019, 80, 103–122. [Google Scholar] [CrossRef]
- Liang, W.; Bhatt, P.M.; Shkurenko, A.; Adil, K.; Mouchaham, G.; Aggarwal, H.; Mallick, A.; Jamal, A.; Belmabkhout, Y.; Eddaoudi, M. A tailor-made interpenetrated MOF with exceptional carbon-capture performance from flue gas. Chem 2019, 5, 950–963. [Google Scholar] [CrossRef]
- Severo, I.A.; Deprá, M.C.; Zepka, L.Q.; Jacob-Lopes, E. Carbon dioxide capture and use by microalgae in photobioreactors. In Bioenergy with Carbon Capture and Storage; Academic Press: Cambridge, MA, USA, 2019; pp. 151–171. [Google Scholar]
- Wen, C.; Karvounis, N.; Walther, J.H.; Yan, Y.; Feng, Y.; Yang, Y. An efficient approach to separate CO2 using supersonic flows for carbon capture and storage. Appl. Energy 2019, 238, 311–319. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Vega, F.; Alonso-Fariñas, B.; Vilches Arenas, L.F.; Navarrete, B. Carbon capture and utilization technologies: A literature review and recent advances. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1403–1433. [Google Scholar] [CrossRef]
- Mandova, H.; Patrizio, P.; Leduc, S.; Kjärstad, J.; Wang, C.; Wetterlund, E.; Kraxner, F.; Gale, W. Achieving carbon-neutral iron and steelmaking in Europe through the deployment of bioenergy with carbon capture and storage. J. Clean. Prod. 2019, 218, 118–129. [Google Scholar] [CrossRef]
- Yüksel, İ.; Dagdeviren, M. Using the analytic network process (ANP) in a SWOT analysis—A case study for a textile firm. Inf. Sci. 2007, 177, 3364–3382. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.F. Prediction, Projection and Forecasting; Kluwer Academic: Boston, MA, USA, 1991. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Ayağ, Z.; Yücekaya, A. A fuzzy ANP-based GRA approach to evaluate ERP packages. Int. J. Enterp. Inf. Syst. 2019, 15, 45–68. [Google Scholar] [CrossRef]
- Alilou, H.; Rahmati, O.; Singh, V.P.; Choubin, B.; Pradhan, B.; Keesstra, S.; Ghiasi, S.S.; Sadeghi, S.H. Evaluation of watershed health using Fuzzy-ANP approach considering geo-environmental and topo-hydrological criteria. J. Environ. Manag. 2019, 232, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, H.; Kabak, Ö. Analysis of Relation between Human Development and Competitiveness Using Fuzzy ANP and DEA. In International Conference on Intelligent and Fuzzy Systems; Springer: Cham, Switzerland, 2019; pp. 859–866. [Google Scholar]
- Mahdiyar, A.; Tabatabaee, S.; Durdyev, S.; Ismail, S.; Abdullah, A.; Rani, W.N.M.W.M. A prototype decision support system for green roof type selection: A cybernetic fuzzy ANP method. Sustain. Cities Soc. 2019, 48, 101532. [Google Scholar] [CrossRef]
- Bathaei, A.; Mardani, A.; Baležentis, T.; Awang, S.R.; Streimikiene, D.; Fei, G.C.; Zakuan, N. Application of Fuzzy Analytical Network Process (ANP) and VIKOR for the Assessment of Green Agility Critical Success Factors in Dairy Companies. Symmetry 2019, 11, 250. [Google Scholar] [CrossRef]
Factors | Sub-Factors | Supported Literature |
---|---|---|
Organizational (factor 1) | Training (sub-factor 1) | Zhou et al. [26]; Liu et al. [27] |
Personnel efficiency (sub-factor 2) | Liu and Wen [28]; Zhou et al. [26] | |
Technical (factor 2) | Engineering improvements (sub-factor 3) | Diefenbach et al. [8]; Ruiz-Rosa et al. [9] |
Technological infrastructure (sub-factor 4) | Wouters et al. [10]; Sun [11]; Mo [12] | |
Market (factor 3) | Benchmarking (sub-factor 5) | Xue et al. [17]; Smith [18]; Botín and Vergara [19] |
Socio-demographic competencies (sub-factor 6) | Henri et al. [13]; Papagiannis et al. [14]; Durán et al. [15] |
For Sub-factor 1 | Factors | PCV | NV | E.V | CI | CR | ||||
F1 | F2 | F3 | F1 | F2 | F3 | |||||
Organizational (factor 1) | 1.00 | 3.00 | 3.00 | 0.60 | 0.67 | 0.50 | 0.589 | 0.027 | 0.046 | |
Technical (factor 2) | 0.33 | 1.00 | 2.00 | 0.20 | 0.22 | 0.33 | 0.252 | |||
Market (factor 3) | 0.33 | 0.50 | 1.00 | 0.20 | 0.11 | 0.17 | 0.159 | |||
For Sub-factor 2 | Factors | PCV | NV | E.V | CI | CR | ||||
F1 | F2 | F3 | F1 | F2 | F3 | |||||
Organizational (factor 1) | 1.00 | 2.00 | 5.00 | 0.59 | 0.60 | 0.56 | 0.581 | 0.002 | 0.003 | |
Technical (factor 2) | 0.50 | 1.00 | 3.00 | 0.29 | 0.30 | 0.33 | 0.309 | |||
Market (factor 3) | 0.20 | 0.33 | 1.00 | 0.12 | 0.10 | 0.11 | 0.110 | |||
For Sub-factor 3 | Factors | PCV | NV | E.V | CI | CR | ||||
F1 | F2 | F3 | F1 | F2 | F3 | |||||
Organizational (factor 1) | 1.00 | 0.33 | 0.14 | 0.09 | 0.08 | 0.10 | 0.088 | 0.004 | 0.006 | |
Technical (factor 2) | 3.00 | 1.00 | 0.33 | 0.27 | 0.23 | 0.23 | 0.243 | |||
Market (factor 3) | 7.00 | 3.00 | 1.00 | 0.64 | 0.69 | 0.68 | 0.669 | |||
For Sub-factor 4 | Factors | PCV | NV | E.V | CI | CR | ||||
F1 | F2 | F3 | F1 | F2 | F3 | |||||
Organizational (factor 1) | 1.00 | 0.14 | 0.33 | 0.09 | 0.11 | 0.05 | 0.083 | 0.033 | 0.057 | |
Technical (factor 2) | 7.00 | 1.00 | 5.00 | 0.64 | 0.74 | 0.79 | 0.724 | |||
Market (factor 3) | 3.00 | 0.20 | 1.00 | 0.27 | 0.15 | 0.16 | 0.193 | |||
For Sub-factor 5 | Factors | PCV | NV | E.V | CI | CR | ||||
F1 | F2 | F3 | F1 | F2 | F3 | |||||
Organizational (factor 1) | 1.00 | 5.00 | 3.00 | 0.65 | 0.56 | 0.69 | 0.633 | 0.019 | 0.033 | |
Technical (factor 2) | 0.20 | 1.00 | 0.33 | 0.13 | 0.11 | 0.08 | 0.106 | |||
Market (factor 3) | 0.33 | 3.00 | 1.00 | 0.22 | 0.33 | 0.23 | 0.260 | |||
For Sub-factor 6 | Factors | PCV | NV | E.V | CI | CR | ||||
F1 | F2 | F3 | F1 | F2 | F3 | |||||
Organizational (factor 1) | 1.00 | 0.20 | 0.33 | 0.11 | 0.13 | 0.08 | 0.106 | 0.019 | 0.033 | |
Technical (factor 2) | 5.00 | 1.00 | 3.00 | 0.56 | 0.65 | 0.69 | 0.633 | |||
Market (factor 3) | 3.00 | 0.33 | 1.00 | 0.33 | 0.22 | 0.23 | 0.260 |
Sub-Factor 1 | Sub-Factor 2 | Sub-Factor 3 | Sub-Factor 4 | Sub-Factor 5 | Sub-Factor 6 | Factor 1 | Factor 2 | Factor 3 | |
---|---|---|---|---|---|---|---|---|---|
Sub-factor 1 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.326 | 0.326 | 0.326 |
Sub-factor 2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.232 | 0.232 | 0.232 |
Sub-factor 3 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.190 | 0.190 | 0.190 |
Sub-factor 4 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.114 | 0.114 | 0.114 |
Sub-factor 5 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.070 | 0.070 | 0.070 |
Sub-factor 6 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.068 | 0.068 | 0.068 |
Factor 1 | 0.405 | 0.405 | 0.405 | 0.405 | 0.405 | 0.405 | 0.000 | 0.000 | 0.000 |
Factor 2 | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 | 0.000 | 0.000 | 0.000 |
Factor 3 | 0.262 | 0.262 | 0.262 | 0.262 | 0.262 | 0.262 | 0.000 | 0.000 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Yüksel, S.; Dinçer, H. Analyzing the Criteria of Efficient Carbon Capture and Separation Technologies for Sustainable Clean Energy Usage. Energies 2020, 13, 2592. https://doi.org/10.3390/en13102592
Liu H, Yüksel S, Dinçer H. Analyzing the Criteria of Efficient Carbon Capture and Separation Technologies for Sustainable Clean Energy Usage. Energies. 2020; 13(10):2592. https://doi.org/10.3390/en13102592
Chicago/Turabian StyleLiu, Haibing, Serhat Yüksel, and Hasan Dinçer. 2020. "Analyzing the Criteria of Efficient Carbon Capture and Separation Technologies for Sustainable Clean Energy Usage" Energies 13, no. 10: 2592. https://doi.org/10.3390/en13102592
APA StyleLiu, H., Yüksel, S., & Dinçer, H. (2020). Analyzing the Criteria of Efficient Carbon Capture and Separation Technologies for Sustainable Clean Energy Usage. Energies, 13(10), 2592. https://doi.org/10.3390/en13102592