Preparation and Properties of Capric–Myristic Acid/Expanded Graphite Composite Phase Change Materials for Latent Heat Thermal Energy Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Capric–Myristic Acid Binary Eutectic Solution
2.3. Preparation of CA–MA/EG CPCMs
2.4. Experiment of Maximum Mass Absorption Ratio of the CA–MA in the CA–MA/EG CPCMs
2.5. Thermal Conductivities Test of CA–MA/EG CPCMs
2.6. Characterization
3. Results and Discussion
3.1. Maximum Mass Absorption Ratio of the CA–MA in the CA–MA/EG CPCMs
3.2. Thermal Properties of the CPCMs
3.3. Microstructure of EG and CA–MA/EG Composite PCMs
3.4. Improvement of the Thermal Performance of the CPCMs
3.5. Thermo-Stability and Thermo-Reliability of the CPCMs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Akeiber, H.; Nejat, P.; Majid, M.Z.A.; Wahid, M.A.; Jomehzadeh, F.; Zeynali Famileh, I.; Calautit, J.K.; Hughes, B.R.; Zaki, S.A. A Review on Phase Change Material (PCM) for Sustainable Passive Cooling in Building Envelopes. Renew. Sustain. Energy Rev. 2016, 60, 1470–1497. [Google Scholar] [CrossRef]
- Mofijur, M.; Mahlia, T.M.I.; Silitonga, A.S.; Ong, H.C.; Silakhori, M.; Hasan, M.H.; Putra, N.; Rahman, S.M. Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview. Energies 2019, 12, 3167. [Google Scholar] [CrossRef]
- He, H.; Zhao, P.; Yue, Q.; Gao, B.; Yue, D.; Li, Q. A Novel Polynary Fatty Acid/Sludge Ceramsite Composite Phase Change Materials and Its Applications in Building Energy Conservation. Renew. Energy 2015, 76, 45–52. [Google Scholar] [CrossRef]
- Pereira da Cunha, J.; Eames, P. Thermal Energy Storage for Low and Medium Temperature Applications Using Phase Change Materials—A Review. Appl. Energy 2016, 177, 227–238. [Google Scholar] [CrossRef]
- Zou, T.; Fu, W.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. Preparation and Performance of Modified Calcium Chloride Hexahydrate Composite Phase Change Material for Air-Conditioning Cold Storage. Int. J. Refrig. 2018, 95, 175–181. [Google Scholar] [CrossRef]
- Kenisarin, M.M. Thermophysical Properties of Some Organic Phase Change Materials for Latent Heat Storage. A Review. Sol. Energy 2014, 107, 553–575. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Al-Sulaiman, F.A.; Ibrahim, N.I.; Zahir, M.H.; Al-Ahmed, A.; Saidur, R.; Yılbaş, B.S.; Sahin, A.Z. A Review on Current Status and Challenges of Inorganic Phase Change Materials for Thermal Energy Storage Systems. Renew. Sustain. Energy Rev. 2017, 70, 1072–1089. [Google Scholar] [CrossRef]
- Zhang, P.; Xiao, X.; Ma, Z.W. A Review of the Composite Phase Change Materials: Fabrication, Characterization, Mathematical Modeling and Application to Performance Enhancement. Appl. Energy 2016, 165, 472–510. [Google Scholar] [CrossRef]
- Şahan, N.; Fois, M.; Paksoy, H. Improving Thermal Conductivity Phase Change Materials—A Study of Paraffin Nanomagnetite Composites. Sol. Energy Mater. Sol. Cells 2015, 137, 61–67. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, N.; Tao, W.; Cao, X.; He, Y. Fatty Acids as Phase Change Materials: A Review. Renew. Sustain. Energy Rev. 2014, 29, 482–498. [Google Scholar] [CrossRef]
- Sarı, A.; Karaipekli, A. Preparation, Thermal Properties and Thermal Reliability of Palmitic Acid/Expanded Graphite Composite as Form-Stable PCM for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2009, 93, 571–576. [Google Scholar] [CrossRef]
- Kahwaji, S.; White, M.A. Prediction of the Properties of Eutectic Fatty Acid Phase Change Materials. Thermochim. Acta 2018, 660, 94–100. [Google Scholar] [CrossRef]
- Zhao, P.; Yue, Q.; He, H.; Gao, B.; Wang, Y.; Li, Q. Study on Phase Diagram of Fatty Acids Mixtures to Determine Eutectic Temperatures and the Corresponding Mixing Proportions. Appl. Energy 2014, 115, 483–490. [Google Scholar] [CrossRef]
- Ke, H. Phase Diagrams, Eutectic Mass Ratios and Thermal Energy Storage Properties of Multiple Fatty Acid Eutectics as Novel Solid-Liquid Phase Change Materials for Storage and Retrieval of Thermal Energy. Appl. Therm. Eng. 2017, 113, 1319–1331. [Google Scholar] [CrossRef]
- Paul, A.; Shi, L.; Bielawski, C.W. A Eutectic Mixture of Galactitol and Mannitol as a Phase Change Material for Latent Heat Storage. Energy Convers. Manag. 2015, 103, 139–146. [Google Scholar] [CrossRef]
- Diarce, G.; Gandarias, I.; Campos-Celador, Á.; García-Romero, A.; Griesser, U.J. Eutectic Mixtures of Sugar Alcohols for Thermal Energy Storage in the 50–90 °C Temperature Range. Sol. Energy Mater. Sol. Cells 2015, 134, 215–226. [Google Scholar] [CrossRef]
- Han, L.; Ma, G.; Xie, S.; Sun, J.; Jia, Y.; Jing, Y. Thermal Properties and Stabilities of the Eutectic Mixture: 1,6-Hexanediol/Lauric Acid as a Phase Change Material for Thermal Energy Storage. Appl. Therm. Eng. 2017, 116, 153–159. [Google Scholar] [CrossRef]
- Gunasekara, S.N.; Martin, V.; Chiu, J.N. Phase Equilibrium in the Design of Phase Change Materials for Thermal Energy Storage: State-of-the-Art. Renew. Sustain. Energy Rev. 2017, 73, 558–581. [Google Scholar] [CrossRef]
- Saeed, R.M.; Schlegel, J.P.; Castano, C.; Sawafta, R.; Kuturu, V. Preparation and Thermal Performance of Methyl Palmitate and Lauric Acid Eutectic Mixture as Phase Change Material (PCM). J. Energy Storage 2017, 13, 418–424. [Google Scholar] [CrossRef]
- Fan, L.; Khodadadi, J.M. Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review. Renew. Sustain. Energy Rev. 2011, 15, 24–46. [Google Scholar] [CrossRef]
- Wu, S.; Yan, T.; Kuai, Z.; Pan, W. Thermal Conductivity Enhancement on Phase Change Materials for Thermal Energy Storage: A Review. Energy Storage Mater. 2020, 25, 251–295. [Google Scholar] [CrossRef]
- Xu, T.; Chen, Q.; Huang, G.; Zhang, Z.; Gao, X.; Lu, S. Preparation and Thermal Energy Storage Properties of D-Mannitol/Expanded Graphite Composite Phase Change Material. Sol. Energy Mater. Sol. Cells 2016, 155, 141–146. [Google Scholar] [CrossRef]
- Karaipekli, A.; Sarı, A.; Kaygusuz, K. Thermal Conductivity Improvement of Stearic Acid Using Expanded Graphite and Carbon Fiber for Energy Storage Applications. Renew. Energy 2007, 32, 2201–2210. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Sanjayan, J.; Wang, X.; Alam, M.; Wilson, J. A Novel Paraffin/Expanded Perlite Composite Phase Change Material for Prevention of PCM Leakage in Cementitious Composites. Appl. Energy 2015, 157, 85–94. [Google Scholar] [CrossRef]
- Tang, F.; Su, D.; Tang, Y.; Fang, G. Synthesis and Thermal Properties of Fatty Acid Eutectics and Diatomite Composites as Shape-Stabilized Phase Change Materials with Enhanced Thermal Conductivity. Sol. Energy Mater. Sol. Cells 2015, 141, 218–224. [Google Scholar] [CrossRef]
- Wang, T.; Wang, S.; Luo, R.; Zhu, C.; Akiyama, T.; Zhang, Z. Microencapsulation of Phase Change Materials with Binary Cores and Calcium Carbonate Shell for Thermal Energy Storage. Appl. Energy 2016, 171, 113–119. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, T. Preparation and Characterization of Hydrated Salts/Silica Composite as Shape-Stabilized Phase Change Material via Sol–Gel Process. Thermochim. Acta 2014, 591, 10–15. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Z.; Wu, B.; Wang, J.; Lei, J. Preparation and Thermal Properties of Stearic Acid/Diatomite Composites as Form-Stable Phase Change Materials for Thermal Energy Storage via Direct Impregnation Method. J. Therm. Anal. Calorim. 2016, 123, 1173–1181. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X.; Zhang, Y.; Song, Q.; Liao, X. Utilization of Lauric Acid-Myristic Acid/Expanded Graphite Phase Change Materials to Improve Thermal Properties of Cement Mortar. Energy Build. 2016, 133, 547–558. [Google Scholar] [CrossRef]
- Wei, H.; Xie, X.; Li, X.; Lin, X. Preparation and Characterization of Capric-Myristic-Stearic Acid Eutectic Mixture/Modified Expanded Vermiculite Composite as a Form-Stable Phase Change Material. Appl. Energy 2016, 178, 616–623. [Google Scholar] [CrossRef]
- Wu, S.; Li, T.X.; Yan, T.; Dai, Y.J.; Wang, R.Z. High Performance Form-Stable Expanded Graphite/Stearic Acid Composite Phase Change Material for Modular Thermal Energy Storage. Int. J. Heat Mass Transf. 2016, 102, 733–744. [Google Scholar] [CrossRef]
- Lin, Y.; Jia, Y.; Alva, G.; Fang, G. Review on Thermal Conductivity Enhancement, Thermal Properties and Applications of Phase Change Materials in Thermal Energy Storage. Renew. Sustain. Energy Rev. 2018, 82, 2730–2742. [Google Scholar] [CrossRef]
- Bose, P.; Amirtham, V.A. A Review on Thermal Conductivity Enhancement of Paraffinwax as Latent Heat Energy Storage Material. Renew. Sustain. Energy Rev. 2016, 65, 81–100. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, Y.; Yuan, J.; Liu, Y. Palmitic Acid-Stearic Acid/Expanded Graphite as Form-Stable Composite Phase-Change Material for Latent Heat Thermal Energy Storage. J. Nanomater. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Yang, X.; Yuan, Y.; Zhang, N.; Cao, X.; Liu, C. Preparation and Properties of Myristic–Palmitic–Stearic Acid/Expanded Graphite Composites as Phase Change Materials for Energy Storage. Sol. Energy 2014, 99, 259–266. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, Y.; Zhang, N.; Cao, X.; Yang, X. A Novel PCM of Lauric–Myristic–Stearic Acid/Expanded Graphite Composite for Thermal Energy Storage. Mater. Lett. 2014, 120, 43–46. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, X.; Chen, C.; Xu, T.; Fang, Y.; Zhang, Z. A Capric–Palmitic–Stearic Acid Ternary Eutectic Mixture/Expanded Graphite Composite Phase Change Material for Thermal Energy Storage. Compos. Part A Appl. Sci. Manuf. 2016, 87, 138–145. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, P.; Meng, Z.; Li, M. Thermal Characterization of Lauric–Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials. J. Nanosci. Nanotechnol. 2015, 15, 3288–3294. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, Y.; Wang, X.; Cao, X.; Yang, X.; Hu, S. Preparation and Characterization of Lauric–Myristic–Palmitic Acid Ternary Eutectic Mixtures/Expanded Graphite Composite Phase Change Material for Thermal Energy Storage. Chem. Eng. J. 2013, 231, 214–219. [Google Scholar] [CrossRef]
- Ma, F.; Li, Y.; Cheng, L.; Chen, M. Preparation and properties of octadecane–palmitic acid/expanded graphite phase change energy storage materials. J. Aeronaut. Mater. 2010, 30, 66–69. [Google Scholar] [CrossRef]
- Zhou, D.; Shi, C.; Yuan, W. Research on the Applicability of Solar Energy-Ground Source Heat Pump in Different Regions of China. In Proceedings of the 2011 Second International Conference on Digital Manufacturing & Automation, Zhangjiajie, China, 5–7 August 2011; pp. 1026–1029. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, Y.; Liu, Y.; Luo, X.; Yuan, J. Preparation and Performance of Capric-Myristic Acid Binary Eutectic Mixtures for Latent Heat Thermal Energy Storages. J. Nanomater. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
PCMs/CPCMs | Melting | Freezing | References | ||
---|---|---|---|---|---|
Temperature (°C) | Latent Heat (J/g) | Temperature (°C) | Latent Heat (J/g) | ||
PA–SA | 54.81 | 187.0 | 54.06 | 179.7 | [34] |
PA–SA/EG | 55.18 | 176.2 | 54.91 | 175.6 | |
MA–PA–SA | 41.72 | 163.5 | 42.38 | 159.8 | [35] |
MA–PA–SA/EG | 41.64 | 153.5 | 42.99 | 151.4 | |
LA–MA–SA | 29.29 | 140.9 | 28.38 | 137.2 | [36] |
LA–MA–SA/EG | 29.05 | 137.1 | 29.38 | 131.3 | |
CA–PA–SA | 18.90 | 147.2 | 16.73 | 142.3 | [37] |
CA–PA–SA/EG | 21.33 | 131.7 | 19.01 | 127.2 | |
LA–SA | 35.54 | 159.9 | 34.36 | / | [38] |
LA–SA/EG | 35.69 | 143.4 | 34.28 | / | |
LA–MA–PA | 31.41 | 145.8 | / | / | [39] |
LA–MA–PA/EG | 30.94 | 135.9 | / | / | |
OC–PA | 28.78 | 181.6 | / | / | [40] |
OC–PA/EG | 29.18 | 160.7 | / | / | |
CA–MA | 19.45 | 150.9 | 18.34 | 149.2 | This study |
CA–MA/EG | 19.78 | 137.3 | 18.85 | 139.8 |
PCM | Melting | Freezing | ||||
---|---|---|---|---|---|---|
Phase Change Temperature (°C) | Peak Temperature (°C) | Phase Change Latent Heat (J/g) | Phase Change Temperature (°C) | Peak Temperature (°C) | Phase Change Latent Heat (J/g) | |
CA–MA | 19.45 ± 0.05 | 22.92 ± 0.05 | 150.9 ± 0.2 | 18.34 ± 0.05 | 16.45 ± 0.05 | 149.2 ± 0.1 |
CA–MA/EG | 19.78 ± 0.05 | 24.15 ± 0.05 | 137.3 ± 0.1 | 18.85 ± 0.05 | 14.83 ± 0.05 | 139.8 ± 0.1 |
PCM | Mass (g) | Thickness (mm) | Diameter (mm) | Density (kg/m3) | Thermal Conductivity (W/m·K) |
1.6654 | 3.92 | 29.92 | 604.42±0.03 | 1.46 ± 0.04 | |
1.4601 | 3.33 | 29.88 | 625.26±0.03 | 1.59 ± 0.05 | |
2.1612 | 4.01 | 29.96 | 764.75±0.03 | 1.73 ± 0.05 | |
2.2549 | 4.22 | 28.28 | 850.90±0.02 | 1.96 ± 0.06 | |
2.0588 | 3.23 | 29.86 | 910.65±0.02 | 2.17 ± 0.07 |
Number of Thermal Cycling | Melting | Freezing | ||
---|---|---|---|---|
Phase Change Temperature (°C) | Phase Change Latent Heat (J/g) | Phase Change Temperature (°C) | Phase Change Latent Heat (J/g) | |
0 | 19.78 ± 0.05 | 137.3 ± 0.1 | 18.85 ± 0.05 | 139.8 ± 0.1 |
500 | 19.62 ± 0.05 | 134.5 ± 0.1 | 18.73 ± 0.05 | 138.1 ± 0.1 |
1000 | 19.42 ± 0.05 | 134.5 ± 0.1 | 18.64 ± 0.05 | 128.7 ± 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, D.; Yuan, J.; Zhou, Y.; Liu, Y. Preparation and Properties of Capric–Myristic Acid/Expanded Graphite Composite Phase Change Materials for Latent Heat Thermal Energy Storage. Energies 2020, 13, 2462. https://doi.org/10.3390/en13102462
Zhou D, Yuan J, Zhou Y, Liu Y. Preparation and Properties of Capric–Myristic Acid/Expanded Graphite Composite Phase Change Materials for Latent Heat Thermal Energy Storage. Energies. 2020; 13(10):2462. https://doi.org/10.3390/en13102462
Chicago/Turabian StyleZhou, Dongyi, Jiawei Yuan, Yuhong Zhou, and Yicai Liu. 2020. "Preparation and Properties of Capric–Myristic Acid/Expanded Graphite Composite Phase Change Materials for Latent Heat Thermal Energy Storage" Energies 13, no. 10: 2462. https://doi.org/10.3390/en13102462
APA StyleZhou, D., Yuan, J., Zhou, Y., & Liu, Y. (2020). Preparation and Properties of Capric–Myristic Acid/Expanded Graphite Composite Phase Change Materials for Latent Heat Thermal Energy Storage. Energies, 13(10), 2462. https://doi.org/10.3390/en13102462