Dynamic Performance Comparison of CO2 Mixture Transcritical Power Cycle Systems with Variable Configurations for Engine Waste Heat Recovery
Abstract
:1. Introduction
2. System Description
3. Mathematic Model
3.1. Heat Exchanger Model
- The heat exchanger was regarded as a horizontal tube-in-tube type.
- The axial heat conductive and the heat transfer loss was ignored.
- The working fluid is compressible, and the exhaust, jacket water, and cooling water were regarded as incompressible.
- The pressure of working fluid is variable with time while the pressure of the heat source was regarding as constant.
- The pressure drop was completely ignored, and the momentum equations were not taken into consideration.
3.2. Condenser and Receiver Model
3.3. Pump and Expander Model
3.4. Selection of Heat Transfer Correlations
3.5. Model Validation
4. Simulation and Results Analysis
4.1. Comparison of Dynamic Performance
4.1.1. Off-Design Performance of the System
4.1.2. Dynamic Response Speed of the System
4.2. Comparison of Sensitive Performance
4.2.1. Sensitivity Analysis Method
4.2.2. Sensitivity Analysis Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Cp | Specific heat capacity (kJ/kg·K) |
A | Arears (m2) |
ω | Pump rotation (rpm/min) |
The cylinder volume (m3) | |
ρ | The density of working fluid (kg/m3) |
h | Enthalpy (kJ/kg·K) |
The volume efficiency | |
Isentropic efficiency of the pump | |
Nozzle coefficient | |
Isentropic efficiency of the expander | |
T | Temperature (K) |
Mass flow rate (kg/s) | |
p | Pressure (MPa) |
Subscripts | |
P | Pump |
exp | Expander |
g | Exhaust |
j | Jacket water |
f1 | Working fluid |
f2 | Heat source (exhaust or jacket water or working fluid after expander) |
w | Tube wall |
s | isentropic |
ai | The average parameters of the ith control cell |
i | inner |
in | inlet |
o | outer |
Abbreviations | |
CMTPC | CO2 mixture transcritical Power Cycle |
B-CMTPC | Basic CO2 mixture transcritical power cycle |
R-CMTPC | CO2 mixture transcritical power cycle with a recuperator |
P-CMTPC | CO2 mixture transcritical Power Cycle with a preheater |
PR-CMTPC | CO2 mixture transcritical Power Cycle with preheater and recuperator |
WHR | Waste Heat Recovery |
ORC | Organic Rankine Cycles |
Appendix A
Parameter | Sensor Type | Scale | Accuracy |
---|---|---|---|
Exhaust side temperature | sheathed thermocouple sensors with first-class precision | 0–650 °C | ±1% |
Other places’ temperature | sheathed Pt100 thermo-resistive type with A-class precision | 200–500 °C | ±0.15% |
High pressure of CO2 | pressure transmitters | 0–14 MPa | ±0.065% |
Low pressure of CO2 | pressure transmitters | 0–12 MPa | ±0.065% |
Exhaust pressure | pressure transmitters | 0–0.5 MPa | ±0.065% |
Cooling water pressure | pressure transmitters | 0–0.5 MPa | ±0.065% |
CO2 mass flow rate | Coriolis mass flowmeter | 0–1080 kg/h | ±0.2% |
Cooling water flow rate | turbine flowmeter | 0–12 m3/h | ±1% |
Fuel flow rate of engine | fuel consumption meter | 5–2000 kg/h | ±0.8% |
Air intake flow of engine | air flow meter | 0–1350 kg/h | ±0.5% |
Parameters | ||
---|---|---|
Heat transfer rate of working fluid in the heating process | 0.89 kW | 1.73% |
Heat transfer rate of exhaust in the heating process | 2.41 kW | 4.51% |
Heat transfer rate of working fluid in the cooling process | 1.17 kW | 2.28% |
Heat transfer rate of water in the cooling process | 4.53 kW | 9.17% |
References
- Lion, S.; Michos, C.N.; Vlaskos, I.; Rouaud, C.; Taccani, R. A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications. Renew. Sustain. Energy Rev. 2017, 79, 691–708. [Google Scholar] [CrossRef]
- Tian, H.; Chang, L.; Shu, G.; Shi, L. Multi-objective optimization of the carbon dioxide transcritical power cycle with various configurations for engine waste heat recovery. Energy Convers. Manag. 2017, 148, 477–488. [Google Scholar] [CrossRef]
- Wang, X.; Shu, G.; Tian, H.; Liu, P.; Jing, D.; Li, X. Dynamic analysis of the dual-loop Organic Rankine Cycle for waste heat recovery of a natural gas engine. Energy Convers. Manag. 2017, 148, 724–736. [Google Scholar] [CrossRef]
- Sawodny, D.; Seitz, O.; Gehring, C.; Bunz, M.; Brunschier, O. Design of a nonlinear Dynamic Feedforward Part for the Evaporator Control of an ORC in HDE. IFAC-PapersOnLine 2016, 49, 625–632. [Google Scholar]
- Wang, X.; Shu, G.; Tian, H.; Liu, P.; Jing, D.; Li, X. The effects of design parameters on the dynamic behavior of organic ranking cycle for the engine waste heat recovery. Energy 2018, 147, 440–450. [Google Scholar] [CrossRef]
- Shu, G.; Wang, X.; Tian, H.; Liu, P.; Jing, D.; Li, X. Scan of working fluids based on dynamic response characters for Organic Rankine Cycle using for engine waste heat recovery. Energy 2017, 133, 609–620. [Google Scholar] [CrossRef]
- Wu, C.; Wang, S.-S.; Jiang, X.; Li, J. Thermodynamic analysis and performance optimization of transcritical power cycles using CO2-based binary zeotropic mixtures as working fluids for geothermal power plants. Appl. Therm. Eng. 2017, 115, 292–304. [Google Scholar] [CrossRef]
- Yang, M.-H. Payback period investigation of the organic Rankine cycle with mixed working fluids to recover waste heat from the exhaust gas of a large marine diesel engine. Energy Convers. Manag. 2018, 162, 189–202. [Google Scholar] [CrossRef]
- Persichilli, M.; Kacludis, A.; Zdankiewicz, E.; Held, T.; Asia, C. Supercritical CO2 power cycle developments and commercialization: Why sCO2 can displace steam ste. In Proceedings of the Power-Gen India & Central Asia 2012, New Delhi, India, 19–21 April 2012. [Google Scholar]
- Li, X.; Shu, G.; Tian, H.; Huang, G.; Liu, P.; Wang, X.; Shi, L. Experimental comparison of dynamic responses of CO2 transcritical power cycle systems used for engine waste heat recovery. Energy Convers. Manag. 2018, 161, 254–265. [Google Scholar] [CrossRef]
- Li, X.; Shu, G.; Tian, H.; Shi, L.; Wang, X. Dynamic Modeling of CO2 Transcritical Power Cycle for Waste Heat Recovery of Gasoline Engines. Energy Procedia 2017, 105, 1576–1581. [Google Scholar] [CrossRef]
- Rony, R.; Yang, H.; Krishnan, S.; Song, J. Recent Advances in Transcritical CO2 (R744) Heat Pump System: A Review. Energies 2019, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, J. Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion. Renew. Sustain. Energy Rev. 2015, 48, 434–451. [Google Scholar] [CrossRef]
- Shi, L.; Shu, G.; Tian, H.; Huang, G.; Chang, L.; Chen, T.; Li, X. Ideal Point Design and Operation of CO2-Based Transcritical Rankine Cycle (CTRC) System Based on High Utilization of Engine’s Waste Heats. Energies 2017, 10, 1692. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.-H. The performance analysis of the transcritical Rankine cycle using carbon dioxide mixtures as the working fluids for waste heat recovery. Energy Convers. Manag. 2017, 151, 86–97. [Google Scholar] [CrossRef]
- Shu, G.; Yu, Z.; Tian, H.; Liu, P.; Xu, Z. Potential of the transcritical Rankine cycle using CO2-based binary zeotropic mixtures for engine’s waste heat recovery. Energy Convers. Manag. 2018, 174, 668–685. [Google Scholar] [CrossRef]
- Zegenhagen, M.T.; Ziegler, F. Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines. Appl. Energy 2015, 160, 221–230. [Google Scholar] [CrossRef]
- Manente, G.; Toffolo, A.; Lazzaretto, A.; Paci, M. An Organic Rankine Cycle off-design model for the search of the optimal control strategy. Energy 2013, 58, 97–106. [Google Scholar] [CrossRef]
- Chen, Y.; Lundqvist, P.; Platell, P. Theoretical research of carbon dioxide power cycle application in automobile industry to reduce vehicle’s fuel consumption. Appl. Therm. Eng. 2005, 25, 2041–2053. [Google Scholar] [CrossRef]
- Li, L.; Ge, Y.T.; Luo, X.; Tassou, S.A. Thermodynamic analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low grade heat to power energy conversion. Appl. Therm. Eng. 2016, 106, 1290–1299. [Google Scholar] [CrossRef]
- Quoilin, S.; Van Den Martijn, B.; Declaye, S.; Dewallef, P.; Lemort, V. Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renew. Sustain. Energy Rev. 2013, 22, 168–186. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wang, Y.; Dong, C.; Wang, L.; Roskilly, A.P. Design and assessment on a novel integrated system for power and refrigeration using waste heat from diesel engine. Appl. Therm. Eng. 2015, 91, 591–599. [Google Scholar] [CrossRef]
- Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Yang, F.Y.; Yang, K.; Wang, Z.; Zhang, J.; Yang, F.B. Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine. Appl. Therm. Eng. 2014, 67, 168–178. [Google Scholar] [CrossRef]
- Shu, G.; Shi, L.; Tian, H.; Li, X.; Huang, G.; Chang, L. An improved CO2 -based transcritical Rankine cycle (CTRC) used for engine waste heat recovery. Appl. Energy 2016, 176, 171–182. [Google Scholar] [CrossRef]
- Shi, L.F.; Shu, G.Q.; Tian, H.; Huang, G.D.; Chen, T.Y.; Li, X.Y.; Li, D. Experimental comparison between four CO2-based transcritical Rankine cycle (CTRC) systems for engine waste heat recovery. Energy Convers. Manag. 2017, 150, 159–171. [Google Scholar] [CrossRef]
- Xie, H.; Yang, C. Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle. Appl. Energy 2013, 112, 130–141. [Google Scholar] [CrossRef]
- Chatzopoulou, M.A.; Simpson, M.; Sapin, P.; Markides, C.N. Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications. Appl. Energy 2019, 238, 1211–1236. [Google Scholar] [CrossRef]
- Wang, X.; Shu, G.; Tian, H.; Feng, W.; Liu, P.; Li, X. Effect factors of part-load performance for various Organic Rankine cycles using in engine waste heat recovery. Energy Convers. Manag. 2018, 174, 504–515. [Google Scholar] [CrossRef]
- Wang, X.; Shu, G.; Tian, H.; Liu, P.; Li, X.; Jing, D. Dynamic Response Performance Comparison of Ranking Cycles with Different Working Fluids for Waste Heat Recovery of Internal Combustion Engines. Energy Procedia 2017, 105, 1600–1605. [Google Scholar] [CrossRef]
- SIMULINK. 2015. Available online: https://ww2.mathworks.cn/products/simulink.html?s_tid=hp_products_simulink(accessed on 15 December 2019).
- Lemmon, E.; Huber, M.; McLinden, M. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, Standared Reference Data Program. 2013.
- Karellas, S.; Schuster, A.; Leontaritis, A.-D. Influence of supercritical ORC parameters on plate heat exchanger design. Appl. Therm. Eng. 2012, 33, 70–76. [Google Scholar] [CrossRef]
- Chowdhury, J.I.; Nguyen, K.; Thornhill, D. Dynamic Model of Supercritical Organic Rankine Cycle Waste Heat Recovery System for Internal Combustion Engine. Int. J. Automot. Technol. 2017, 18, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Pangborn, H.; Alleyne, A.G.; Wu, N. A comparison between finite volume and switched moving boundary approaches for dynamic vapor compression system modeling. Int. J. Refrig. 2015, 53, 101–114. [Google Scholar] [CrossRef]
- Shu, G.; Li, X.; Tian, H.; Shi, L.; Wang, X.; Yu, G. Design condition and operating strategy analysis of CO2 transcritical waste heat recovery system for engine with variable operating conditions. Energy Convers. Manag. 2017, 142, 188–199. [Google Scholar] [CrossRef]
- Jensen, J.M.; Tummescheit, H. Moving boundary models for dynamic simulations of two-phase flows. In Proceedings of the 2nd International Modelica Conference, Oberpfaffhenhofen, Germany, 18–19 March 2002; pp. 235–244. [Google Scholar]
- Horst, T.A.; Rottengruber, H.-S.; Seifert, M.; Ringler, J. Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems. Appl. Energy 2013, 105, 293–303. [Google Scholar] [CrossRef]
- Pitla, S.S.; Robinson, D.M.; Groll, E.A.; Ramadhyani, S. Heat transfer from supercritical carbon dioxide in tube flow: A critical review. Hvac&R Res. 1998, 4, 281–301. [Google Scholar]
- Gelbe, H.; Ziada, S. O2 Vibration of Tube Bundles in Heat Exchangers. In VDI Heat Atlas; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Faghri, A.; Yaghoubi, M. International Journal of Heat, Transfer Mass. Adv. Heat Transfer 2015, 23, 577. [Google Scholar]
- Li, X.; Shu, G.; Tian, H.; Shi, L.; Huang, G.; Chen, T.; Liu, P. Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery. Energy 2017, 140, 696–707. [Google Scholar] [CrossRef]
Parameter. | Unit | Content |
---|---|---|
Engine type | — | Inline, 6 cylinders |
Intake system type | — | Turbo-charge/Intercooler |
Fuel type | — | Diesel |
Bore | mm | 113 |
Stroke | mm | 140 |
Displacement | L | 8.424 |
Maximum torque | N·m | 1280 |
Compression ratio | — | 17.5 |
Rate power | kW | 243 |
Rate speed | rpm | 2200 |
Speed at maximum torque | rpm | 1200–1700 |
Valve per cylinder | — | 4 |
Part | Fluid Region | Heat Transfer Correlations |
---|---|---|
Gas heater | Exhaust [37] | |
Working fluid [38] | ||
Preheater | Jacket water [39] | |
Working fluid [38] | ||
Recuperator | Heat source [39] | |
Working fluid [38] | ||
Condenser | Cooling water [39] | |
Single-phase [39] | ||
Two-phase [40] |
Parameter | Unit | Content |
---|---|---|
Engine speed | rpm | 1100 |
Engine torque | N·m | 603 |
Exhaust temperature | °C | 444.68–452.49 |
Exhaust mass flow rate | kg/s | 0.10–0.11 |
Cooling water temperature | °C | 13.59–14.20 |
Cooling water mass flow rate | m3/h | 1.86–1.92 |
Engine Condition | Engine Power (kW) | Exhaust Temperature (°C) | Exhaust Mass Flow (kg/s) | Jacket Water Temperature (°C) | Jacket Water Mass Flow (kg/s) |
---|---|---|---|---|---|
Design condition | 192.9 | 389.7 | 0.320 | 85.0 | 3.23 |
Down load | 168.7 | 362.56 | 0.294 | 87.0 | 3.21 |
Up load | 216.4 | 445.32 | 0.322 | 80.0 | 3.22 |
Engine Condition | B-CMTPC | P-CMTPC | R-CMTPC | PR-CMTPC |
---|---|---|---|---|
Down load | −21.25% | −11.23% | −31.91% | −12.87% |
Up load | 16.80% | 11.46% | 35.00% | 13.97% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Wang, X.; Tian, H.; Shu, G.; Zhang, J.; Gao, Y.; Bian, X. Dynamic Performance Comparison of CO2 Mixture Transcritical Power Cycle Systems with Variable Configurations for Engine Waste Heat Recovery. Energies 2020, 13, 32. https://doi.org/10.3390/en13010032
Wang R, Wang X, Tian H, Shu G, Zhang J, Gao Y, Bian X. Dynamic Performance Comparison of CO2 Mixture Transcritical Power Cycle Systems with Variable Configurations for Engine Waste Heat Recovery. Energies. 2020; 13(1):32. https://doi.org/10.3390/en13010032
Chicago/Turabian StyleWang, Rui, Xuan Wang, Hua Tian, Gequn Shu, Jing Zhang, Yan Gao, and Xingyan Bian. 2020. "Dynamic Performance Comparison of CO2 Mixture Transcritical Power Cycle Systems with Variable Configurations for Engine Waste Heat Recovery" Energies 13, no. 1: 32. https://doi.org/10.3390/en13010032
APA StyleWang, R., Wang, X., Tian, H., Shu, G., Zhang, J., Gao, Y., & Bian, X. (2020). Dynamic Performance Comparison of CO2 Mixture Transcritical Power Cycle Systems with Variable Configurations for Engine Waste Heat Recovery. Energies, 13(1), 32. https://doi.org/10.3390/en13010032